| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infrenegsupex | Unicode version | ||
| Description: The infimum of a set of
reals |
| Ref | Expression |
|---|---|
| infrenegsupex.ex |
|
| infrenegsupex.ss |
|
| Ref | Expression |
|---|---|
| infrenegsupex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 7191 |
. . . . . 6
| |
| 2 | 1 | adantl 271 |
. . . . 5
|
| 3 | infrenegsupex.ex |
. . . . 5
| |
| 4 | 2, 3 | infclti 6436 |
. . . 4
|
| 5 | 4 | recnd 7147 |
. . 3
|
| 6 | 5 | negnegd 7410 |
. 2
|
| 7 | negeq 7301 |
. . . . . . . . 9
| |
| 8 | 7 | cbvmptv 3873 |
. . . . . . . 8
|
| 9 | 8 | mptpreima 4834 |
. . . . . . 7
|
| 10 | eqid 2081 |
. . . . . . . . . 10
| |
| 11 | 10 | negiso 8033 |
. . . . . . . . 9
|
| 12 | 11 | simpri 111 |
. . . . . . . 8
|
| 13 | 12 | imaeq1i 4685 |
. . . . . . 7
|
| 14 | 9, 13 | eqtr3i 2103 |
. . . . . 6
|
| 15 | 14 | supeq1i 6401 |
. . . . 5
|
| 16 | 11 | simpli 109 |
. . . . . . . . 9
|
| 17 | isocnv 5471 |
. . . . . . . . 9
| |
| 18 | 16, 17 | ax-mp 7 |
. . . . . . . 8
|
| 19 | isoeq1 5461 |
. . . . . . . . 9
| |
| 20 | 12, 19 | ax-mp 7 |
. . . . . . . 8
|
| 21 | 18, 20 | mpbi 143 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | infrenegsupex.ss |
. . . . . 6
| |
| 24 | 3 | cnvinfex 6431 |
. . . . . 6
|
| 25 | 2 | cnvti 6432 |
. . . . . 6
|
| 26 | 22, 23, 24, 25 | supisoti 6423 |
. . . . 5
|
| 27 | 15, 26 | syl5eq 2125 |
. . . 4
|
| 28 | df-inf 6398 |
. . . . . . 7
| |
| 29 | 28 | eqcomi 2085 |
. . . . . 6
|
| 30 | 29 | fveq2i 5201 |
. . . . 5
|
| 31 | eqidd 2082 |
. . . . . 6
| |
| 32 | negeq 7301 |
. . . . . . 7
| |
| 33 | 32 | adantl 271 |
. . . . . 6
|
| 34 | 5 | negcld 7406 |
. . . . . 6
|
| 35 | 31, 33, 4, 34 | fvmptd 5274 |
. . . . 5
|
| 36 | 30, 35 | syl5eq 2125 |
. . . 4
|
| 37 | 27, 36 | eqtr2d 2114 |
. . 3
|
| 38 | 37 | negeqd 7303 |
. 2
|
| 39 | 6, 38 | eqtr3d 2115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-sup 6397 df-inf 6398 df-pnf 7155 df-mnf 7156 df-ltxr 7158 df-sub 7281 df-neg 7282 |
| This theorem is referenced by: supminfex 8685 minmax 10112 infssuzcldc 10347 |
| Copyright terms: Public domain | W3C validator |