| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqsubdir | Unicode version | ||
| Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqsubdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 495 |
. . . . 5
| |
| 2 | simprl 497 |
. . . . 5
| |
| 3 | simprr 498 |
. . . . 5
| |
| 4 | 1, 2, 3 | modqcld 9330 |
. . . 4
|
| 5 | qre 8710 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | simplr 496 |
. . . . 5
| |
| 8 | 7, 2, 3 | modqcld 9330 |
. . . 4
|
| 9 | qre 8710 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 6, 10 | subge0d 7635 |
. 2
|
| 12 | qsubcl 8723 |
. . . . . . . 8
| |
| 13 | 12 | adantr 270 |
. . . . . . 7
|
| 14 | 3 | gt0ne0d 7613 |
. . . . . . . . . 10
|
| 15 | qdivcl 8728 |
. . . . . . . . . 10
| |
| 16 | 1, 2, 14, 15 | syl3anc 1169 |
. . . . . . . . 9
|
| 17 | 16 | flqcld 9279 |
. . . . . . . 8
|
| 18 | qdivcl 8728 |
. . . . . . . . . 10
| |
| 19 | 7, 2, 14, 18 | syl3anc 1169 |
. . . . . . . . 9
|
| 20 | 19 | flqcld 9279 |
. . . . . . . 8
|
| 21 | 17, 20 | zsubcld 8474 |
. . . . . . 7
|
| 22 | modqcyc2 9362 |
. . . . . . 7
| |
| 23 | 13, 21, 2, 3, 22 | syl22anc 1170 |
. . . . . 6
|
| 24 | qcn 8719 |
. . . . . . . . . 10
| |
| 25 | 1, 24 | syl 14 |
. . . . . . . . 9
|
| 26 | qcn 8719 |
. . . . . . . . . 10
| |
| 27 | 7, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | zq 8711 |
. . . . . . . . . . . 12
| |
| 29 | 17, 28 | syl 14 |
. . . . . . . . . . 11
|
| 30 | qmulcl 8722 |
. . . . . . . . . . 11
| |
| 31 | 2, 29, 30 | syl2anc 403 |
. . . . . . . . . 10
|
| 32 | qcn 8719 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | zq 8711 |
. . . . . . . . . . . 12
| |
| 35 | 20, 34 | syl 14 |
. . . . . . . . . . 11
|
| 36 | qmulcl 8722 |
. . . . . . . . . . 11
| |
| 37 | 2, 35, 36 | syl2anc 403 |
. . . . . . . . . 10
|
| 38 | qcn 8719 |
. . . . . . . . . 10
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 25, 27, 33, 39 | sub4d 7468 |
. . . . . . . 8
|
| 41 | qcn 8719 |
. . . . . . . . . . 11
| |
| 42 | 2, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 17 | zcnd 8470 |
. . . . . . . . . 10
|
| 44 | 20 | zcnd 8470 |
. . . . . . . . . 10
|
| 45 | 42, 43, 44 | subdid 7518 |
. . . . . . . . 9
|
| 46 | 45 | oveq2d 5548 |
. . . . . . . 8
|
| 47 | modqval 9326 |
. . . . . . . . . 10
| |
| 48 | 1, 2, 3, 47 | syl3anc 1169 |
. . . . . . . . 9
|
| 49 | modqval 9326 |
. . . . . . . . . 10
| |
| 50 | 7, 2, 3, 49 | syl3anc 1169 |
. . . . . . . . 9
|
| 51 | 48, 50 | oveq12d 5550 |
. . . . . . . 8
|
| 52 | 40, 46, 51 | 3eqtr4d 2123 |
. . . . . . 7
|
| 53 | 52 | oveq1d 5547 |
. . . . . 6
|
| 54 | 23, 53 | eqtr3d 2115 |
. . . . 5
|
| 55 | 54 | adantr 270 |
. . . 4
|
| 56 | qsubcl 8723 |
. . . . . . 7
| |
| 57 | 4, 8, 56 | syl2anc 403 |
. . . . . 6
|
| 58 | 57 | adantr 270 |
. . . . 5
|
| 59 | 2 | adantr 270 |
. . . . 5
|
| 60 | simpr 108 |
. . . . 5
| |
| 61 | 6, 10 | resubcld 7485 |
. . . . . . 7
|
| 62 | qre 8710 |
. . . . . . . 8
| |
| 63 | 2, 62 | syl 14 |
. . . . . . 7
|
| 64 | modqge0 9334 |
. . . . . . . . 9
| |
| 65 | 7, 2, 3, 64 | syl3anc 1169 |
. . . . . . . 8
|
| 66 | 6, 10 | subge02d 7637 |
. . . . . . . 8
|
| 67 | 65, 66 | mpbid 145 |
. . . . . . 7
|
| 68 | modqlt 9335 |
. . . . . . . 8
| |
| 69 | 1, 2, 3, 68 | syl3anc 1169 |
. . . . . . 7
|
| 70 | 61, 6, 63, 67, 69 | lelttrd 7234 |
. . . . . 6
|
| 71 | 70 | adantr 270 |
. . . . 5
|
| 72 | modqid 9351 |
. . . . 5
| |
| 73 | 58, 59, 60, 71, 72 | syl22anc 1170 |
. . . 4
|
| 74 | 55, 73 | eqtrd 2113 |
. . 3
|
| 75 | modqge0 9334 |
. . . . . 6
| |
| 76 | 13, 2, 3, 75 | syl3anc 1169 |
. . . . 5
|
| 77 | 76 | adantr 270 |
. . . 4
|
| 78 | simpr 108 |
. . . 4
| |
| 79 | 77, 78 | breqtrd 3809 |
. . 3
|
| 80 | 74, 79 | impbida 560 |
. 2
|
| 81 | 11, 80 | bitr3d 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-q 8705 df-rp 8735 df-fl 9274 df-mod 9325 |
| This theorem is referenced by: modqeqmodmin 9396 |
| Copyright terms: Public domain | W3C validator |