| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > monoord2 | Unicode version | ||
| Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| Ref | Expression |
|---|---|
| monoord2.1 |
|
| monoord2.2 |
|
| monoord2.3 |
|
| Ref | Expression |
|---|---|
| monoord2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoord2.1 |
. . . 4
| |
| 2 | monoord2.2 |
. . . . . . 7
| |
| 3 | 2 | renegcld 7484 |
. . . . . 6
|
| 4 | eqid 2081 |
. . . . . 6
| |
| 5 | 3, 4 | fmptd 5343 |
. . . . 5
|
| 6 | 5 | ffvelrnda 5323 |
. . . 4
|
| 7 | monoord2.3 |
. . . . . . . . 9
| |
| 8 | 7 | ralrimiva 2434 |
. . . . . . . 8
|
| 9 | oveq1 5539 |
. . . . . . . . . . 11
| |
| 10 | 9 | fveq2d 5202 |
. . . . . . . . . 10
|
| 11 | fveq2 5198 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | breq12d 3798 |
. . . . . . . . 9
|
| 13 | 12 | cbvralv 2577 |
. . . . . . . 8
|
| 14 | 8, 13 | sylib 120 |
. . . . . . 7
|
| 15 | 14 | r19.21bi 2449 |
. . . . . 6
|
| 16 | fzp1elp1 9092 |
. . . . . . . . . 10
| |
| 17 | 16 | adantl 271 |
. . . . . . . . 9
|
| 18 | eluzelz 8628 |
. . . . . . . . . . . . . 14
| |
| 19 | 1, 18 | syl 14 |
. . . . . . . . . . . . 13
|
| 20 | 19 | zcnd 8470 |
. . . . . . . . . . . 12
|
| 21 | ax-1cn 7069 |
. . . . . . . . . . . 12
| |
| 22 | npcan 7317 |
. . . . . . . . . . . 12
| |
| 23 | 20, 21, 22 | sylancl 404 |
. . . . . . . . . . 11
|
| 24 | 23 | oveq2d 5548 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 270 |
. . . . . . . . 9
|
| 26 | 17, 25 | eleqtrd 2157 |
. . . . . . . 8
|
| 27 | 2 | ralrimiva 2434 |
. . . . . . . . 9
|
| 28 | 27 | adantr 270 |
. . . . . . . 8
|
| 29 | fveq2 5198 |
. . . . . . . . . 10
| |
| 30 | 29 | eleq1d 2147 |
. . . . . . . . 9
|
| 31 | 30 | rspcv 2697 |
. . . . . . . 8
|
| 32 | 26, 28, 31 | sylc 61 |
. . . . . . 7
|
| 33 | fzssp1 9085 |
. . . . . . . . . 10
| |
| 34 | 33, 24 | syl5sseq 3047 |
. . . . . . . . 9
|
| 35 | 34 | sselda 2999 |
. . . . . . . 8
|
| 36 | 11 | eleq1d 2147 |
. . . . . . . . 9
|
| 37 | 36 | rspcv 2697 |
. . . . . . . 8
|
| 38 | 35, 28, 37 | sylc 61 |
. . . . . . 7
|
| 39 | 32, 38 | lenegd 7624 |
. . . . . 6
|
| 40 | 15, 39 | mpbid 145 |
. . . . 5
|
| 41 | 38 | renegcld 7484 |
. . . . . 6
|
| 42 | 11 | negeqd 7303 |
. . . . . . 7
|
| 43 | 42, 4 | fvmptg 5269 |
. . . . . 6
|
| 44 | 35, 41, 43 | syl2anc 403 |
. . . . 5
|
| 45 | 32 | renegcld 7484 |
. . . . . 6
|
| 46 | 29 | negeqd 7303 |
. . . . . . 7
|
| 47 | 46, 4 | fvmptg 5269 |
. . . . . 6
|
| 48 | 26, 45, 47 | syl2anc 403 |
. . . . 5
|
| 49 | 40, 44, 48 | 3brtr4d 3815 |
. . . 4
|
| 50 | 1, 6, 49 | monoord 9455 |
. . 3
|
| 51 | eluzfz1 9050 |
. . . . 5
| |
| 52 | 1, 51 | syl 14 |
. . . 4
|
| 53 | fveq2 5198 |
. . . . . . . 8
| |
| 54 | 53 | eleq1d 2147 |
. . . . . . 7
|
| 55 | 54 | rspcv 2697 |
. . . . . 6
|
| 56 | 52, 27, 55 | sylc 61 |
. . . . 5
|
| 57 | 56 | renegcld 7484 |
. . . 4
|
| 58 | 53 | negeqd 7303 |
. . . . 5
|
| 59 | 58, 4 | fvmptg 5269 |
. . . 4
|
| 60 | 52, 57, 59 | syl2anc 403 |
. . 3
|
| 61 | eluzfz2 9051 |
. . . . 5
| |
| 62 | 1, 61 | syl 14 |
. . . 4
|
| 63 | fveq2 5198 |
. . . . . . . 8
| |
| 64 | 63 | eleq1d 2147 |
. . . . . . 7
|
| 65 | 64 | rspcv 2697 |
. . . . . 6
|
| 66 | 62, 27, 65 | sylc 61 |
. . . . 5
|
| 67 | 66 | renegcld 7484 |
. . . 4
|
| 68 | 63 | negeqd 7303 |
. . . . 5
|
| 69 | 68, 4 | fvmptg 5269 |
. . . 4
|
| 70 | 62, 67, 69 | syl2anc 403 |
. . 3
|
| 71 | 50, 60, 70 | 3brtr3d 3814 |
. 2
|
| 72 | 66, 56 | lenegd 7624 |
. 2
|
| 73 | 71, 72 | mpbird 165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |