ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 Unicode version

Theorem mulp1mod1 9367
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 8630 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  CC )
21adantl 271 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  CC )
3 simpl 107 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
43zcnd 8470 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  CC )
52, 4mulcomd 7140 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  =  ( A  x.  N ) )
65oveq1d 5547 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  ( ( A  x.  N )  mod  N ) )
7 eluzelz 8628 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
8 zq 8711 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  QQ )
97, 8syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  QQ )
109adantl 271 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  QQ )
11 0red 7120 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  e.  RR )
12 2re 8109 . . . . . . . . 9  |-  2  e.  RR
1312a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  RR )
147adantl 271 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  ZZ )
1514zred 8469 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  RR )
16 2pos 8130 . . . . . . . . 9  |-  0  <  2
1716a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  2 )
18 eluzle 8631 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1918adantl 271 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
2  <_  N )
2011, 13, 15, 17, 19ltletrd 7527 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  N )
21 mulqmod0 9332 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( A  x.  N
)  mod  N )  =  0 )
223, 10, 20, 21syl3anc 1169 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  x.  N )  mod  N
)  =  0 )
236, 22eqtrd 2113 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( N  x.  A )  mod  N
)  =  0 )
2423oveq1d 5547 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  ( 0  +  1 ) )
25 0p1e1 8153 . . . 4  |-  ( 0  +  1 )  =  1
2624, 25syl6eq 2129 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  mod 
N )  +  1 )  =  1 )
2726oveq1d 5547 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( 1  mod  N ) )
28 zq 8711 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  QQ )
293, 28syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  QQ )
30 qmulcl 8722 . . . 4  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
3110, 29, 30syl2anc 403 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  x.  A
)  e.  QQ )
32 1z 8377 . . . 4  |-  1  e.  ZZ
33 zq 8711 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3432, 33mp1i 10 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  QQ )
35 modqaddmod 9365 . . 3  |-  ( ( ( ( N  x.  A )  e.  QQ  /\  1  e.  QQ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
3631, 34, 10, 20, 35syl22anc 1170 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( N  x.  A )  mod  N )  +  1 )  mod  N
)  =  ( ( ( N  x.  A
)  +  1 )  mod  N ) )
37 eluz2gt1 8689 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
3837adantl 271 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
1  <  N )
39 q1mod 9358 . . 3  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
4010, 38, 39syl2anc 403 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( 1  mod  N
)  =  1 )
4127, 36, 403eqtr3d 2121 1  |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( N  x.  A )  +  1 )  mod  N
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154   2c2 8089   ZZcz 8351   ZZ>=cuz 8619   QQcq 8704    mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator