| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulpipqqs | Unicode version | ||
| Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulpipqqs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpi 6518 |
. . . 4
| |
| 2 | mulclpi 6518 |
. . . 4
| |
| 3 | opelxpi 4394 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 283 |
. . 3
|
| 5 | 4 | an4s 552 |
. 2
|
| 6 | mulclpi 6518 |
. . . 4
| |
| 7 | mulclpi 6518 |
. . . 4
| |
| 8 | opelxpi 4394 |
. . . 4
| |
| 9 | 6, 7, 8 | syl2an 283 |
. . 3
|
| 10 | 9 | an4s 552 |
. 2
|
| 11 | mulclpi 6518 |
. . . 4
| |
| 12 | mulclpi 6518 |
. . . 4
| |
| 13 | opelxpi 4394 |
. . . 4
| |
| 14 | 11, 12, 13 | syl2an 283 |
. . 3
|
| 15 | 14 | an4s 552 |
. 2
|
| 16 | enqex 6550 |
. 2
| |
| 17 | enqer 6548 |
. 2
| |
| 18 | df-enq 6537 |
. 2
| |
| 19 | simpll 495 |
. . . 4
| |
| 20 | simprr 498 |
. . . 4
| |
| 21 | 19, 20 | oveq12d 5550 |
. . 3
|
| 22 | simplr 496 |
. . . 4
| |
| 23 | simprl 497 |
. . . 4
| |
| 24 | 22, 23 | oveq12d 5550 |
. . 3
|
| 25 | 21, 24 | eqeq12d 2095 |
. 2
|
| 26 | simpll 495 |
. . . 4
| |
| 27 | simprr 498 |
. . . 4
| |
| 28 | 26, 27 | oveq12d 5550 |
. . 3
|
| 29 | simplr 496 |
. . . 4
| |
| 30 | simprl 497 |
. . . 4
| |
| 31 | 29, 30 | oveq12d 5550 |
. . 3
|
| 32 | 28, 31 | eqeq12d 2095 |
. 2
|
| 33 | dfmpq2 6545 |
. 2
| |
| 34 | simpll 495 |
. . . 4
| |
| 35 | simprl 497 |
. . . 4
| |
| 36 | 34, 35 | oveq12d 5550 |
. . 3
|
| 37 | simplr 496 |
. . . 4
| |
| 38 | simprr 498 |
. . . 4
| |
| 39 | 37, 38 | oveq12d 5550 |
. . 3
|
| 40 | 36, 39 | opeq12d 3578 |
. 2
|
| 41 | simpll 495 |
. . . 4
| |
| 42 | simprl 497 |
. . . 4
| |
| 43 | 41, 42 | oveq12d 5550 |
. . 3
|
| 44 | simplr 496 |
. . . 4
| |
| 45 | simprr 498 |
. . . 4
| |
| 46 | 44, 45 | oveq12d 5550 |
. . 3
|
| 47 | 43, 46 | opeq12d 3578 |
. 2
|
| 48 | simpll 495 |
. . . 4
| |
| 49 | simprl 497 |
. . . 4
| |
| 50 | 48, 49 | oveq12d 5550 |
. . 3
|
| 51 | simplr 496 |
. . . 4
| |
| 52 | simprr 498 |
. . . 4
| |
| 53 | 51, 52 | oveq12d 5550 |
. . 3
|
| 54 | 50, 53 | opeq12d 3578 |
. 2
|
| 55 | df-mqqs 6540 |
. 2
| |
| 56 | df-nqqs 6538 |
. 2
| |
| 57 | mulcmpblnq 6558 |
. 2
| |
| 58 | 5, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57 | oviec 6235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-mi 6496 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-mqqs 6540 |
| This theorem is referenced by: mulclnq 6566 mulcomnqg 6573 mulassnqg 6574 distrnqg 6577 mulidnq 6579 recexnq 6580 ltmnqg 6591 nqnq0m 6645 |
| Copyright terms: Public domain | W3C validator |