ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0lt2 Unicode version

Theorem nn0lt2 8429
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  0  \/  N  =  1 ) )

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 664 . . 3  |-  ( N  =  1  ->  ( N  =  0  \/  N  =  1 ) )
21a1i 9 . 2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  1  ->  ( N  =  0  \/  N  =  1 ) ) )
3 nn0z 8371 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
4 2z 8379 . . . . . 6  |-  2  e.  ZZ
5 zltlem1 8408 . . . . . 6  |-  ( ( N  e.  ZZ  /\  2  e.  ZZ )  ->  ( N  <  2  <->  N  <_  ( 2  -  1 ) ) )
63, 4, 5sylancl 404 . . . . 5  |-  ( N  e.  NN0  ->  ( N  <  2  <->  N  <_  ( 2  -  1 ) ) )
7 2m1e1 8156 . . . . . 6  |-  ( 2  -  1 )  =  1
87breq2i 3793 . . . . 5  |-  ( N  <_  ( 2  -  1 )  <->  N  <_  1 )
96, 8syl6bb 194 . . . 4  |-  ( N  e.  NN0  ->  ( N  <  2  <->  N  <_  1 ) )
10 necom 2329 . . . . 5  |-  ( N  =/=  1  <->  1  =/=  N )
11 1z 8377 . . . . . . . 8  |-  1  e.  ZZ
12 zltlen 8426 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  ->  ( N  <  1  <->  ( N  <_  1  /\  1  =/=  N ) ) )
133, 11, 12sylancl 404 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  <  1  <->  ( N  <_  1  /\  1  =/= 
N ) ) )
14 nn0lt10b 8428 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  <  1  <->  N  = 
0 ) )
1514biimpa 290 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  N  <  1 )  ->  N  =  0 )
1615orcd 684 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  N  <  1 )  -> 
( N  =  0  \/  N  =  1 ) )
1716ex 113 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  <  1  ->  ( N  =  0  \/  N  =  1 ) ) )
1813, 17sylbird 168 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  <_  1  /\  1  =/=  N )  -> 
( N  =  0  \/  N  =  1 ) ) )
1918expd 254 . . . . 5  |-  ( N  e.  NN0  ->  ( N  <_  1  ->  (
1  =/=  N  -> 
( N  =  0  \/  N  =  1 ) ) ) )
2010, 19syl7bi 163 . . . 4  |-  ( N  e.  NN0  ->  ( N  <_  1  ->  ( N  =/=  1  ->  ( N  =  0  \/  N  =  1 ) ) ) )
219, 20sylbid 148 . . 3  |-  ( N  e.  NN0  ->  ( N  <  2  ->  ( N  =/=  1  ->  ( N  =  0  \/  N  =  1 ) ) ) )
2221imp 122 . 2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =/=  1  ->  ( N  =  0  \/  N  =  1 ) ) )
23 zdceq 8423 . . . . 5  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  -> DECID  N  =  1 )
243, 11, 23sylancl 404 . . . 4  |-  ( N  e.  NN0  -> DECID  N  =  1
)
2524adantr 270 . . 3  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> DECID  N  =  1 )
26 dcne 2256 . . 3  |-  (DECID  N  =  1  <->  ( N  =  1  \/  N  =/=  1 ) )
2725, 26sylib 120 . 2  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  1  \/  N  =/=  1
) )
282, 22, 27mpjaod 670 1  |-  ( ( N  e.  NN0  /\  N  <  2 )  -> 
( N  =  0  \/  N  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785  (class class class)co 5532   0cc0 6981   1c1 6982    < clt 7153    <_ cle 7154    - cmin 7279   2c2 8089   NN0cn0 8288   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator