ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnindnn Unicode version

Theorem nnindnn 7059
Description: Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8055 designed for real number axioms which involve natural numbers (notably, axcaucvg 7066). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
nnindnn.1  |-  ( z  =  1  ->  ( ph 
<->  ps ) )
nnindnn.y  |-  ( z  =  k  ->  ( ph 
<->  ch ) )
nnindnn.y1  |-  ( z  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
nnindnn.a  |-  ( z  =  A  ->  ( ph 
<->  ta ) )
nnindnn.basis  |-  ps
nnindnn.step  |-  ( k  e.  N  ->  ( ch  ->  th ) )
Assertion
Ref Expression
nnindnn  |-  ( A  e.  N  ->  ta )
Distinct variable groups:    x, y    z,
k    z, A    ps, z    ch, z    th, z    ta, z    ph, k    k, N, y, z    x, N, z    ph, x, y
Allowed substitution hints:    ph( z)    ps( x, y, k)    ch( x, y, k)    th( x, y, k)    ta( x, y, k)    A( x, y, k)

Proof of Theorem nnindnn
StepHypRef Expression
1 nntopi.n . . . . . . 7  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21peano1nnnn 7020 . . . . . 6  |-  1  e.  N
3 nnindnn.basis . . . . . 6  |-  ps
4 nnindnn.1 . . . . . . 7  |-  ( z  =  1  ->  ( ph 
<->  ps ) )
54elrab 2749 . . . . . 6  |-  ( 1  e.  { z  e.  N  |  ph }  <->  ( 1  e.  N  /\  ps ) )
62, 3, 5mpbir2an 883 . . . . 5  |-  1  e.  { z  e.  N  |  ph }
7 elrabi 2746 . . . . . . 7  |-  ( k  e.  { z  e.  N  |  ph }  ->  k  e.  N )
81peano2nnnn 7021 . . . . . . . . . 10  |-  ( k  e.  N  ->  (
k  +  1 )  e.  N )
98a1d 22 . . . . . . . . 9  |-  ( k  e.  N  ->  (
k  e.  N  -> 
( k  +  1 )  e.  N ) )
10 nnindnn.step . . . . . . . . 9  |-  ( k  e.  N  ->  ( ch  ->  th ) )
119, 10anim12d 328 . . . . . . . 8  |-  ( k  e.  N  ->  (
( k  e.  N  /\  ch )  ->  (
( k  +  1 )  e.  N  /\  th ) ) )
12 nnindnn.y . . . . . . . . 9  |-  ( z  =  k  ->  ( ph 
<->  ch ) )
1312elrab 2749 . . . . . . . 8  |-  ( k  e.  { z  e.  N  |  ph }  <->  ( k  e.  N  /\  ch ) )
14 nnindnn.y1 . . . . . . . . 9  |-  ( z  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
1514elrab 2749 . . . . . . . 8  |-  ( ( k  +  1 )  e.  { z  e.  N  |  ph }  <->  ( ( k  +  1 )  e.  N  /\  th ) )
1611, 13, 153imtr4g 203 . . . . . . 7  |-  ( k  e.  N  ->  (
k  e.  { z  e.  N  |  ph }  ->  ( k  +  1 )  e.  {
z  e.  N  |  ph } ) )
177, 16mpcom 36 . . . . . 6  |-  ( k  e.  { z  e.  N  |  ph }  ->  ( k  +  1 )  e.  { z  e.  N  |  ph } )
1817rgen 2416 . . . . 5  |-  A. k  e.  { z  e.  N  |  ph }  ( k  +  1 )  e. 
{ z  e.  N  |  ph }
191peano5nnnn 7058 . . . . 5  |-  ( ( 1  e.  { z  e.  N  |  ph }  /\  A. k  e. 
{ z  e.  N  |  ph }  ( k  +  1 )  e. 
{ z  e.  N  |  ph } )  ->  N  C_  { z  e.  N  |  ph }
)
206, 18, 19mp2an 416 . . . 4  |-  N  C_  { z  e.  N  |  ph }
2120sseli 2995 . . 3  |-  ( A  e.  N  ->  A  e.  { z  e.  N  |  ph } )
22 nnindnn.a . . . 4  |-  ( z  =  A  ->  ( ph 
<->  ta ) )
2322elrab 2749 . . 3  |-  ( A  e.  { z  e.  N  |  ph }  <->  ( A  e.  N  /\  ta ) )
2421, 23sylib 120 . 2  |-  ( A  e.  N  ->  ( A  e.  N  /\  ta ) )
2524simprd 112 1  |-  ( A  e.  N  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   {crab 2352    C_ wss 2973   |^|cint 3636  (class class class)co 5532   1c1 6982    + caddc 6984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-enr 6903  df-nr 6904  df-plr 6905  df-0r 6908  df-1r 6909  df-c 6987  df-1 6989  df-r 6991  df-add 6992
This theorem is referenced by:  nntopi  7060
  Copyright terms: Public domain W3C validator