ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nnnn Unicode version

Theorem peano5nnnn 7058
Description: Peano's inductive postulate. This is a counterpart to peano5nni 8042 designed for real number axioms which involve natural numbers (notably, axcaucvg 7066). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano5nnnn  |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
Distinct variable groups:    x, y, A   
z, A, y
Allowed substitution hints:    N( x, y, z)

Proof of Theorem peano5nnnn
StepHypRef Expression
1 oveq1 5539 . . . 4  |-  ( y  =  z  ->  (
y  +  1 )  =  ( z  +  1 ) )
21eleq1d 2147 . . 3  |-  ( y  =  z  ->  (
( y  +  1 )  e.  A  <->  ( z  +  1 )  e.  A ) )
32cbvralv 2577 . 2  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  <->  A. z  e.  A  ( z  +  1 )  e.  A )
4 ax1re 7030 . . . . 5  |-  1  e.  RR
5 elin 3155 . . . . . 6  |-  ( 1  e.  ( A  i^i  RR )  <->  ( 1  e.  A  /\  1  e.  RR ) )
65biimpri 131 . . . . 5  |-  ( ( 1  e.  A  /\  1  e.  RR )  ->  1  e.  ( A  i^i  RR ) )
74, 6mpan2 415 . . . 4  |-  ( 1  e.  A  ->  1  e.  ( A  i^i  RR ) )
8 inss1 3186 . . . . . 6  |-  ( A  i^i  RR )  C_  A
9 ssralv 3058 . . . . . 6  |-  ( ( A  i^i  RR ) 
C_  A  ->  ( A. y  e.  A  ( y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A ) )
108, 9ax-mp 7 . . . . 5  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A
)
11 inss2 3187 . . . . . . . 8  |-  ( A  i^i  RR )  C_  RR
1211sseli 2995 . . . . . . 7  |-  ( y  e.  ( A  i^i  RR )  ->  y  e.  RR )
13 axaddrcl 7033 . . . . . . . 8  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  ( y  +  1 )  e.  RR )
144, 13mpan2 415 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
15 elin 3155 . . . . . . . 8  |-  ( ( y  +  1 )  e.  ( A  i^i  RR )  <->  ( ( y  +  1 )  e.  A  /\  ( y  +  1 )  e.  RR ) )
1615simplbi2com 1373 . . . . . . 7  |-  ( ( y  +  1 )  e.  RR  ->  (
( y  +  1 )  e.  A  -> 
( y  +  1 )  e.  ( A  i^i  RR ) ) )
1712, 14, 163syl 17 . . . . . 6  |-  ( y  e.  ( A  i^i  RR )  ->  ( (
y  +  1 )  e.  A  ->  (
y  +  1 )  e.  ( A  i^i  RR ) ) )
1817ralimia 2424 . . . . 5  |-  ( A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )
1910, 18syl 14 . . . 4  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )
20 axcnex 7027 . . . . . . 7  |-  CC  e.  _V
21 axresscn 7028 . . . . . . 7  |-  RR  C_  CC
2220, 21ssexi 3916 . . . . . 6  |-  RR  e.  _V
2322inex2 3913 . . . . 5  |-  ( A  i^i  RR )  e. 
_V
24 eleq2 2142 . . . . . . . 8  |-  ( x  =  ( A  i^i  RR )  ->  ( 1  e.  x  <->  1  e.  ( A  i^i  RR ) ) )
25 eleq2 2142 . . . . . . . . 9  |-  ( x  =  ( A  i^i  RR )  ->  ( (
y  +  1 )  e.  x  <->  ( y  +  1 )  e.  ( A  i^i  RR ) ) )
2625raleqbi1dv 2557 . . . . . . . 8  |-  ( x  =  ( A  i^i  RR )  ->  ( A. y  e.  x  (
y  +  1 )  e.  x  <->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) )
2724, 26anbi12d 456 . . . . . . 7  |-  ( x  =  ( A  i^i  RR )  ->  ( (
1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) ) )
2827elabg 2739 . . . . . 6  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) ) )
29 nntopi.n . . . . . . 7  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
30 intss1 3651 . . . . . . 7  |-  ( ( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  ( A  i^i  RR ) )
3129, 30syl5eqss 3043 . . . . . 6  |-  ( ( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  N  C_  ( A  i^i  RR ) )
3228, 31syl6bir 162 . . . . 5  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )  ->  N  C_  ( A  i^i  RR ) ) )
3323, 32ax-mp 7 . . . 4  |-  ( ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )  ->  N  C_  ( A  i^i  RR ) )
347, 19, 33syl2an 283 . . 3  |-  ( ( 1  e.  A  /\  A. y  e.  A  ( y  +  1 )  e.  A )  ->  N  C_  ( A  i^i  RR ) )
3534, 8syl6ss 3011 . 2  |-  ( ( 1  e.  A  /\  A. y  e.  A  ( y  +  1 )  e.  A )  ->  N  C_  A )
363, 35sylan2br 282 1  |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   _Vcvv 2601    i^i cin 2972    C_ wss 2973   |^|cint 3636  (class class class)co 5532   CCcc 6979   RRcr 6980   1c1 6982    + caddc 6984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-enr 6903  df-nr 6904  df-plr 6905  df-0r 6908  df-1r 6909  df-c 6987  df-1 6989  df-r 6991  df-add 6992
This theorem is referenced by:  nnindnn  7059
  Copyright terms: Public domain W3C validator