ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvg Unicode version

Theorem axcaucvg 7066
Description: Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 
1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for  NN or division, we use  N for the natural numbers and express a reciprocal in terms of  iota_.

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7096. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
Assertion
Ref Expression
axcaucvg  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
Distinct variable groups:    j, F, k, n    x, F, y, j, k    j, N, k, n    x, N, y    ph, j, k, n   
k, r, n    ph, x
Allowed substitution hints:    ph( y, r)    F( r)    N( r)

Proof of Theorem axcaucvg
Dummy variables  a  l  u  z  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . 2  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2 axcaucvg.f . 2  |-  ( ph  ->  F : N --> RR )
3 axcaucvg.cau . 2  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
4 breq1 3788 . . . . . . . . . . . . 13  |-  ( b  =  l  ->  (
b  <Q  [ <. j ,  1o >. ]  ~Q  <->  l  <Q  [
<. j ,  1o >. ]  ~Q  ) )
54cbvabv 2202 . . . . . . . . . . . 12  |-  { b  |  b  <Q  [ <. j ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  }
6 breq2 3789 . . . . . . . . . . . . 13  |-  ( c  =  u  ->  ( [ <. j ,  1o >. ]  ~Q  <Q  c  <->  [
<. j ,  1o >. ]  ~Q  <Q  u )
)
76cbvabv 2202 . . . . . . . . . . . 12  |-  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c }  =  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u }
85, 7opeq12i 3575 . . . . . . . . . . 11  |-  <. { b  |  b  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  =  <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.
98oveq1i 5542 . . . . . . . . . 10  |-  ( <. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
109opeq1i 3573 . . . . . . . . 9  |-  <. ( <. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.
11 eceq1 6164 . . . . . . . . 9  |-  ( <.
( <. { b  |  b  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  ->  [ <. (
<. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1210, 11ax-mp 7 . . . . . . . 8  |-  [ <. (
<. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R
1312opeq1i 3573 . . . . . . 7  |-  <. [ <. (
<. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.
1413fveq2i 5201 . . . . . 6  |-  ( F `
 <. [ <. ( <. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1514a1i 9 . . . . 5  |-  ( a  =  z  ->  ( F `  <. [ <. (
<. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
16 opeq1 3570 . . . . 5  |-  ( a  =  z  ->  <. a ,  0R >.  =  <. z ,  0R >. )
1715, 16eqeq12d 2095 . . . 4  |-  ( a  =  z  ->  (
( F `  <. [
<. ( <. { b  |  b  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. a ,  0R >.  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
1817cbvriotav 5499 . . 3  |-  ( iota_ a  e.  R.  ( F `
 <. [ <. ( <. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. a ,  0R >. )  =  ( iota_ z  e. 
R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
1918mpteq2i 3865 . 2  |-  ( j  e.  N.  |->  ( iota_ a  e.  R.  ( F `
 <. [ <. ( <. { b  |  b 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { c  |  [ <. j ,  1o >. ]  ~Q  <Q  c } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. a ,  0R >. )
)  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
201, 2, 3, 19axcaucvglemres 7065 1  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   <.cop 3401   |^|cint 3636   class class class wbr 3785    |-> cmpt 3839   -->wf 4918   ` cfv 4922   iota_crio 5487  (class class class)co 5532   1oc1o 6017   [cec 6127   N.cnpi 6462    ~Q ceq 6469    <Q cltq 6475   1Pc1p 6482    +P. cpp 6483    ~R cer 6486   R.cnr 6487   0Rc0r 6488   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    <RR cltrr 6985    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-iltp 6660  df-enr 6903  df-nr 6904  df-plr 6905  df-mr 6906  df-ltr 6907  df-0r 6908  df-1r 6909  df-m1r 6910  df-c 6987  df-0 6988  df-1 6989  df-r 6991  df-add 6992  df-mul 6993  df-lt 6994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator