ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloni Unicode version

Theorem eloni 4130
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
eloni  |-  ( A  e.  On  ->  Ord  A )

Proof of Theorem eloni
StepHypRef Expression
1 elong 4128 . 2  |-  ( A  e.  On  ->  ( A  e.  On  <->  Ord  A ) )
21ibi 174 1  |-  ( A  e.  On  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433   Ord word 4117   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123
This theorem is referenced by:  elon2  4131  onelon  4139  onin  4141  onelss  4142  ontr1  4144  onordi  4181  onss  4237  suceloni  4245  sucelon  4247  onsucmin  4251  onsucelsucr  4252  onintonm  4261  ordsucunielexmid  4274  onsucuni2  4307  nnord  4352  tfrlem1  5946  tfrlemisucaccv  5962  tfrlemibfn  5965  tfrlemiubacc  5967  tfrexlem  5971  sucinc2  6049  phplem4on  6353  ordiso  6447
  Copyright terms: Public domain W3C validator