ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opoe Unicode version

Theorem opoe 10295
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opoe  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  +  B ) )

Proof of Theorem opoe
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 10272 . . . . 5  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 odd2np1 10272 . . . . 5  |-  ( B  e.  ZZ  ->  ( -.  2  ||  B  <->  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
31, 2bi2anan9 570 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B ) ) )
4 reeanv 2523 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
5 2z 8379 . . . . . . . . 9  |-  2  e.  ZZ
6 zaddcl 8391 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
76peano2zd 8472 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( a  +  b )  +  1 )  e.  ZZ )
8 dvdsmul1 10217 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( ( a  +  b )  +  1 )  e.  ZZ )  ->  2  ||  (
2  x.  ( ( a  +  b )  +  1 ) ) )
95, 7, 8sylancr 405 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( 2  x.  ( ( a  +  b )  +  1 ) ) )
10 zcn 8356 . . . . . . . . 9  |-  ( a  e.  ZZ  ->  a  e.  CC )
11 zcn 8356 . . . . . . . . 9  |-  ( b  e.  ZZ  ->  b  e.  CC )
12 addcl 7098 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  b )  e.  CC )
13 2cn 8110 . . . . . . . . . . . . . 14  |-  2  e.  CC
14 ax-1cn 7069 . . . . . . . . . . . . . 14  |-  1  e.  CC
15 adddi 7105 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( a  +  b )  e.  CC  /\  1  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) ) )
1613, 14, 15mp3an13 1259 . . . . . . . . . . . . 13  |-  ( ( a  +  b )  e.  CC  ->  (
2  x.  ( ( a  +  b )  +  1 ) )  =  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) ) )
1712, 16syl 14 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) ) )
18 adddi 7105 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b
) ) )
1913, 18mp3an1 1255 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b ) ) )
2019oveq1d 5547 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  +  b ) )  +  ( 2  x.  1 ) )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 2  x.  1 ) ) )
2117, 20eqtrd 2113 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 2  x.  1 ) ) )
22 2t1e2 8185 . . . . . . . . . . . . 13  |-  ( 2  x.  1 )  =  2
23 df-2 8098 . . . . . . . . . . . . 13  |-  2  =  ( 1  +  1 )
2422, 23eqtri 2101 . . . . . . . . . . . 12  |-  ( 2  x.  1 )  =  ( 1  +  1 )
2524oveq2i 5543 . . . . . . . . . . 11  |-  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 2  x.  1 ) )  =  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  ( 1  +  1 ) )
2621, 25syl6eq 2129 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  ( 1  +  1 ) ) )
27 mulcl 7100 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
2813, 27mpan 414 . . . . . . . . . . 11  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
29 mulcl 7100 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
3013, 29mpan 414 . . . . . . . . . . 11  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
31 add4 7269 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  a )  e.  CC  /\  ( 2  x.  b
)  e.  CC )  /\  ( 1  e.  CC  /\  1  e.  CC ) )  -> 
( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  ( 1  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3214, 14, 31mpanr12 429 . . . . . . . . . . 11  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b ) )  +  ( 1  +  1 ) )  =  ( ( ( 2  x.  a )  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3328, 30, 32syl2an 283 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  ( 1  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3426, 33eqtrd 2113 . . . . . . . . 9  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
3510, 11, 34syl2an 283 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( 2  x.  (
( a  +  b )  +  1 ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
369, 35breqtrd 3809 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( ( ( 2  x.  a
)  +  1 )  +  ( ( 2  x.  b )  +  1 ) ) )
37 oveq12 5541 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  +  ( ( 2  x.  b )  +  1 ) )  =  ( A  +  B ) )
3837breq2d 3797 . . . . . . 7  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( 2  ||  ( ( ( 2  x.  a )  +  1 )  +  ( ( 2  x.  b
)  +  1 ) )  <->  2  ||  ( A  +  B )
) )
3936, 38syl5ibcom 153 . . . . . 6  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  +  B
) ) )
4039rexlimivv 2482 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  +  B )
)
414, 40sylbir 133 . . . 4  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B )  -> 
2  ||  ( A  +  B ) )
423, 41syl6bi 161 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  ->  2  ||  ( A  +  B
) ) )
4342imp 122 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  +  B ) )
4443an4s 552 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979   1c1 6982    + caddc 6984    x. cmul 6986   2c2 8089   ZZcz 8351    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-xor 1307  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-dvds 10196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator