| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpwsucexmid | Unicode version | ||
| Description: The subset in ordpwsucss 4310 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordpwsucexmid.1 |
|
| Ref | Expression |
|---|---|
| ordpwsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 3938 |
. . . . 5
| |
| 2 | 0elon 4147 |
. . . . 5
| |
| 3 | elin 3155 |
. . . . 5
| |
| 4 | 1, 2, 3 | mpbir2an 883 |
. . . 4
|
| 5 | ordtriexmidlem 4263 |
. . . . 5
| |
| 6 | suceq 4157 |
. . . . . . 7
| |
| 7 | pweq 3385 |
. . . . . . . 8
| |
| 8 | 7 | ineq1d 3166 |
. . . . . . 7
|
| 9 | 6, 8 | eqeq12d 2095 |
. . . . . 6
|
| 10 | ordpwsucexmid.1 |
. . . . . 6
| |
| 11 | 9, 10 | vtoclri 2673 |
. . . . 5
|
| 12 | 5, 11 | ax-mp 7 |
. . . 4
|
| 13 | 4, 12 | eleqtrri 2154 |
. . 3
|
| 14 | elsuci 4158 |
. . 3
| |
| 15 | 13, 14 | ax-mp 7 |
. 2
|
| 16 | 0ex 3905 |
. . . . . 6
| |
| 17 | 16 | snid 3425 |
. . . . 5
|
| 18 | biidd 170 |
. . . . . 6
| |
| 19 | 18 | elrab3 2750 |
. . . . 5
|
| 20 | 17, 19 | ax-mp 7 |
. . . 4
|
| 21 | 20 | biimpi 118 |
. . 3
|
| 22 | ordtriexmidlem2 4264 |
. . . 4
| |
| 23 | 22 | eqcoms 2084 |
. . 3
|
| 24 | 21, 23 | orim12i 708 |
. 2
|
| 25 | 15, 24 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |