| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucim | Unicode version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordsucim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4133 |
. . 3
| |
| 2 | suctr 4176 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | df-suc 4126 |
. . . . . 6
| |
| 5 | 4 | eleq2i 2145 |
. . . . 5
|
| 6 | elun 3113 |
. . . . 5
| |
| 7 | velsn 3415 |
. . . . . 6
| |
| 8 | 7 | orbi2i 711 |
. . . . 5
|
| 9 | 5, 6, 8 | 3bitri 204 |
. . . 4
|
| 10 | dford3 4122 |
. . . . . . . 8
| |
| 11 | 10 | simprbi 269 |
. . . . . . 7
|
| 12 | df-ral 2353 |
. . . . . . 7
| |
| 13 | 11, 12 | sylib 120 |
. . . . . 6
|
| 14 | 13 | 19.21bi 1490 |
. . . . 5
|
| 15 | treq 3881 |
. . . . . 6
| |
| 16 | 1, 15 | syl5ibrcom 155 |
. . . . 5
|
| 17 | 14, 16 | jaod 669 |
. . . 4
|
| 18 | 9, 17 | syl5bi 150 |
. . 3
|
| 19 | 18 | ralrimiv 2433 |
. 2
|
| 20 | dford3 4122 |
. 2
| |
| 21 | 3, 19, 20 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-uni 3602 df-tr 3876 df-iord 4121 df-suc 4126 |
| This theorem is referenced by: suceloni 4245 ordsucg 4246 onsucsssucr 4253 ordtriexmidlem 4263 2ordpr 4267 ordsuc 4306 nnsucsssuc 6094 |
| Copyright terms: Public domain | W3C validator |