ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 Unicode version

Theorem prmuloc2 6757
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 6756 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prmuloc2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prmuloc 6756 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  Q.  E. y  e. 
Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) ) )
2 nfv 1461 . . 3  |-  F/ x
( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )
3 nfre1 2407 . . 3  |-  F/ x E. x  e.  L  ( x  .Q  B
)  e.  U
4 simpr1 944 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  x  e.  L )
5 simpr3 946 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  .Q  1Q )  <Q  ( x  .Q  B ) )
6 simplrr 502 . . . . . . . . . . 11  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  Q. )
7 mulidnq 6579 . . . . . . . . . . 11  |-  ( y  e.  Q.  ->  (
y  .Q  1Q )  =  y )
8 breq1 3788 . . . . . . . . . . 11  |-  ( ( y  .Q  1Q )  =  y  ->  (
( y  .Q  1Q )  <Q  ( x  .Q  B )  <->  y  <Q  ( x  .Q  B ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( ( y  .Q  1Q )  <Q  (
x  .Q  B )  <-> 
y  <Q  ( x  .Q  B ) ) )
105, 9mpbid 145 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  <Q  ( x  .Q  B ) )
11 simplll 499 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  <. L ,  U >.  e. 
P. )
12 simpr2 945 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  U )
13 prcunqu 6675 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  .Q  B )  ->  (
x  .Q  B )  e.  U ) )
1411, 12, 13syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  <Q  (
x  .Q  B )  ->  ( x  .Q  B )  e.  U
) )
1510, 14mpd 13 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( x  .Q  B
)  e.  U )
16 rspe 2412 . . . . . . . 8  |-  ( ( x  e.  L  /\  ( x  .Q  B
)  e.  U )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
174, 15, 16syl2anc 403 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
1817ex 113 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
1918anassrs 392 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  /\  y  e.  Q. )  ->  ( ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
2019rexlimdva 2477 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  ->  ( E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
2120ex 113 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( x  e.  Q.  ->  ( E. y  e.  Q.  (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) ) )
222, 3, 21rexlimd 2474 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( E. x  e.  Q.  E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
231, 22mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   <.cop 3401   class class class wbr 3785  (class class class)co 5532   Q.cnq 6470   1Qc1q 6471    .Q cmq 6473    <Q cltq 6475   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656
This theorem is referenced by:  recexprlem1ssl  6823  recexprlem1ssu  6824
  Copyright terms: Public domain W3C validator