ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt0 Unicode version

Theorem prodgt0 7930
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodgt0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )

Proof of Theorem prodgt0
StepHypRef Expression
1 simpllr 500 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  B  e.  RR )
21renegcld 7484 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -u B  e.  RR )
3 simplll 499 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  A  e.  RR )
43renegcld 7484 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -u A  e.  RR )
5 simplr 496 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B  e.  RR )
65lt0neg1d 7616 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( B  <  0  <->  0  <  -u B ) )
76biimpa 290 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  -u B )
8 simprr 498 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( A  x.  B
) )
9 simpll 495 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  A  e.  RR )
109recnd 7147 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  A  e.  CC )
115recnd 7147 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B  e.  CC )
1210, 11mul2negd 7517 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( -u A  x.  -u B
)  =  ( A  x.  B ) )
138, 12breqtrrd 3811 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( -u A  x.  -u B ) )
1410negcld 7406 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -u A  e.  CC )
1511negcld 7406 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -u B  e.  CC )
1614, 15mulcomd 7140 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( -u A  x.  -u B
)  =  ( -u B  x.  -u A ) )
1713, 16breqtrd 3809 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  ( -u B  x.  -u A ) )
1817adantr 270 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  (
-u B  x.  -u A
) )
19 prodgt0gt0 7929 . . . . . 6  |-  ( ( ( -u B  e.  RR  /\  -u A  e.  RR )  /\  (
0  <  -u B  /\  0  <  ( -u B  x.  -u A ) ) )  ->  0  <  -u A )
202, 4, 7, 18, 19syl22anc 1170 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <  -u A )
213lt0neg1d 7616 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  ( A  <  0  <->  0  <  -u A
) )
2220, 21mpbird 165 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  A  <  0 )
23 simplrl 501 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  <_  A )
24 0red 7120 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  0  e.  RR )
2524, 3lenltd 7227 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
2623, 25mpbid 145 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  0  <  ( A  x.  B ) ) )  /\  B  <  0
)  ->  -.  A  <  0 )
2722, 26pm2.65da 619 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  -.  B  <  0 )
28 0red 7120 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  e.  RR )
2928, 5lenltd 7227 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  (
0  <_  B  <->  -.  B  <  0 ) )
3027, 29mpbird 165 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <_  B )
319, 5remulcld 7149 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( A  x.  B )  e.  RR )
3231, 8gt0ap0d 7728 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( A  x.  B ) #  0 )
3310, 11, 32mulap0bbd 7750 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  B #  0 )
34 0cnd 7112 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  e.  CC )
35 apsym 7706 . . . 4  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  ( B #  0  <->  0 #  B ) )
3611, 34, 35syl2anc 403 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  ( B #  0  <->  0 #  B )
)
3733, 36mpbid 145 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0 #  B )
38 ltleap 7730 . . 3  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  ( 0  <_  B  /\  0 #  B ) ) )
3928, 5, 38syl2anc 403 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  (
0  <  B  <->  ( 0  <_  B  /\  0 #  B ) ) )
4030, 37, 39mpbir2and 885 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  ( A  x.  B )
) )  ->  0  <  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981    x. cmul 6986    < clt 7153    <_ cle 7154   -ucneg 7280   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761
This theorem is referenced by:  prodgt02  7931  prodgt0i  7986  evennn2n  10283
  Copyright terms: Public domain W3C validator