ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ap0d Unicode version

Theorem gt0ap0d 7728
Description: Positive implies apart from zero. Because of the way we define #,  A must be an element of  RR, not just  RR*. (Contributed by Jim Kingdon, 27-Feb-2020.)
Hypotheses
Ref Expression
gt0ap0d.1  |-  ( ph  ->  A  e.  RR )
gt0ap0d.2  |-  ( ph  ->  0  <  A )
Assertion
Ref Expression
gt0ap0d  |-  ( ph  ->  A #  0 )

Proof of Theorem gt0ap0d
StepHypRef Expression
1 gt0ap0d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 gt0ap0d.2 . 2  |-  ( ph  ->  0  <  A )
3 gt0ap0 7725 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
41, 2, 3syl2anc 403 1  |-  ( ph  ->  A #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433   class class class wbr 3785   RRcr 6980   0cc0 6981    < clt 7153   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  prodgt0gt0  7929  prodgt0  7930  ltdiv1  7946  ltmuldiv  7952  ledivmul  7955  lt2mul2div  7957  lemuldiv  7959  ltrec  7961  lerec  7962  ltrec1  7966  lerec2  7967  ledivdiv  7968  lediv2  7969  ltdiv23  7970  lediv23  7971  lediv12a  7972  recp1lt1  7977  ledivp1  7981  nnap0  8068  rpap0  8750  modq0  9331  mulqmod0  9332  negqmod0  9333  modqlt  9335  modqdiffl  9337  modqid0  9352  modqcyc  9361  modqmuladdnn0  9370  q2txmodxeq0  9386  modqdi  9394  ltexp2a  9528  leexp2a  9529  expnbnd  9596  expcanlem  9643  expcan  9644  resqrexlemover  9896  resqrexlemcalc1  9900  resqrexlemcalc2  9901  ltabs  9973
  Copyright terms: Public domain W3C validator