ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon GIF version

Theorem rdgon 5996
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.)
Hypotheses
Ref Expression
rdgon.1 (𝜑𝐹 Fn V)
rdgon.2 (𝜑𝐴 ∈ On)
rdgon.3 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
Assertion
Ref Expression
rdgon ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rdgon
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5198 . . . . 5 (𝑧 = 𝑥 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘𝑥))
21eleq1d 2147 . . . 4 (𝑧 = 𝑥 → ((rec(𝐹, 𝐴)‘𝑧) ∈ On ↔ (rec(𝐹, 𝐴)‘𝑥) ∈ On))
32imbi2d 228 . . 3 (𝑧 = 𝑥 → ((𝜑 → (rec(𝐹, 𝐴)‘𝑧) ∈ On) ↔ (𝜑 → (rec(𝐹, 𝐴)‘𝑥) ∈ On)))
4 fveq2 5198 . . . . 5 (𝑧 = 𝐵 → (rec(𝐹, 𝐴)‘𝑧) = (rec(𝐹, 𝐴)‘𝐵))
54eleq1d 2147 . . . 4 (𝑧 = 𝐵 → ((rec(𝐹, 𝐴)‘𝑧) ∈ On ↔ (rec(𝐹, 𝐴)‘𝐵) ∈ On))
65imbi2d 228 . . 3 (𝑧 = 𝐵 → ((𝜑 → (rec(𝐹, 𝐴)‘𝑧) ∈ On) ↔ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ On)))
7 r19.21v 2438 . . . 4 (∀𝑥𝑧 (𝜑 → (rec(𝐹, 𝐴)‘𝑥) ∈ On) ↔ (𝜑 → ∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On))
8 rdgon.2 . . . . . . . . 9 (𝜑𝐴 ∈ On)
9 fvres 5219 . . . . . . . . . . . . . 14 (𝑥𝑧 → ((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) = (rec(𝐹, 𝐴)‘𝑥))
109eleq1d 2147 . . . . . . . . . . . . 13 (𝑥𝑧 → (((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) ∈ On ↔ (rec(𝐹, 𝐴)‘𝑥) ∈ On))
1110adantl 271 . . . . . . . . . . . 12 ((𝜑𝑥𝑧) → (((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) ∈ On ↔ (rec(𝐹, 𝐴)‘𝑥) ∈ On))
12 rdgon.3 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
13 fveq2 5198 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
1413eleq1d 2147 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝐹𝑥) ∈ On ↔ (𝐹𝑤) ∈ On))
1514cbvralv 2577 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ On (𝐹𝑥) ∈ On ↔ ∀𝑤 ∈ On (𝐹𝑤) ∈ On)
1612, 15sylib 120 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑤 ∈ On (𝐹𝑤) ∈ On)
17 fveq2 5198 . . . . . . . . . . . . . . . 16 (𝑤 = ((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) → (𝐹𝑤) = (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)))
1817eleq1d 2147 . . . . . . . . . . . . . . 15 (𝑤 = ((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) → ((𝐹𝑤) ∈ On ↔ (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On))
1918rspcv 2697 . . . . . . . . . . . . . 14 (((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) ∈ On → (∀𝑤 ∈ On (𝐹𝑤) ∈ On → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On))
2016, 19syl5com 29 . . . . . . . . . . . . 13 (𝜑 → (((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) ∈ On → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On))
2120adantr 270 . . . . . . . . . . . 12 ((𝜑𝑥𝑧) → (((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥) ∈ On → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On))
2211, 21sylbird 168 . . . . . . . . . . 11 ((𝜑𝑥𝑧) → ((rec(𝐹, 𝐴)‘𝑥) ∈ On → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On))
2322ralimdva 2429 . . . . . . . . . 10 (𝜑 → (∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On → ∀𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On))
24 vex 2604 . . . . . . . . . . 11 𝑧 ∈ V
25 iunon 5922 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ ∀𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On) → 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On)
2624, 25mpan 414 . . . . . . . . . 10 (∀𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On → 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On)
2723, 26syl6 33 . . . . . . . . 9 (𝜑 → (∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On → 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On))
28 onun2 4234 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥)) ∈ On) → (𝐴 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥))) ∈ On)
298, 27, 28syl6an 1363 . . . . . . . 8 (𝜑 → (∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On → (𝐴 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥))) ∈ On))
3029adantr 270 . . . . . . 7 ((𝜑𝑧 ∈ On) → (∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On → (𝐴 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥))) ∈ On))
31 rdgon.1 . . . . . . . . . 10 (𝜑𝐹 Fn V)
3231, 8jca 300 . . . . . . . . 9 (𝜑 → (𝐹 Fn V ∧ 𝐴 ∈ On))
33 rdgivallem 5991 . . . . . . . . . 10 ((𝐹 Fn V ∧ 𝐴 ∈ On ∧ 𝑧 ∈ On) → (rec(𝐹, 𝐴)‘𝑧) = (𝐴 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥))))
34333expa 1138 . . . . . . . . 9 (((𝐹 Fn V ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ On) → (rec(𝐹, 𝐴)‘𝑧) = (𝐴 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥))))
3532, 34sylan 277 . . . . . . . 8 ((𝜑𝑧 ∈ On) → (rec(𝐹, 𝐴)‘𝑧) = (𝐴 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥))))
3635eleq1d 2147 . . . . . . 7 ((𝜑𝑧 ∈ On) → ((rec(𝐹, 𝐴)‘𝑧) ∈ On ↔ (𝐴 𝑥𝑧 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝑧)‘𝑥))) ∈ On))
3730, 36sylibrd 167 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On → (rec(𝐹, 𝐴)‘𝑧) ∈ On))
3837expcom 114 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On → (rec(𝐹, 𝐴)‘𝑧) ∈ On)))
3938a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑥𝑧 (rec(𝐹, 𝐴)‘𝑥) ∈ On) → (𝜑 → (rec(𝐹, 𝐴)‘𝑧) ∈ On)))
407, 39syl5bi 150 . . 3 (𝑧 ∈ On → (∀𝑥𝑧 (𝜑 → (rec(𝐹, 𝐴)‘𝑥) ∈ On) → (𝜑 → (rec(𝐹, 𝐴)‘𝑧) ∈ On)))
413, 6, 40tfis3 4327 . 2 (𝐵 ∈ On → (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ On))
4241impcom 123 1 ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  Vcvv 2601  cun 2971   ciun 3678  Oncon0 4118  cres 4365   Fn wfn 4917  cfv 4922  reccrdg 5979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-irdg 5980
This theorem is referenced by:  oacl  6063  omcl  6064  oeicl  6065
  Copyright terms: Public domain W3C validator