ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab Unicode version

Theorem resopab 4672
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 4375 . 2  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  ( { <. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )
2 df-xp 4369 . . . . . 6  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
3 vex 2604 . . . . . . . 8  |-  y  e. 
_V
43biantru 296 . . . . . . 7  |-  ( x  e.  A  <->  ( x  e.  A  /\  y  e.  _V ) )
54opabbii 3845 . . . . . 6  |-  { <. x ,  y >.  |  x  e.  A }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
62, 5eqtr4i 2104 . . . . 5  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  x  e.  A }
76ineq2i 3164 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )
8 incom 3158 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )  =  ( { <. x ,  y
>.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )
97, 8eqtri 2101 . . 3  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  x  e.  A }  i^i  {
<. x ,  y >.  |  ph } )
10 inopab 4486 . . 3  |-  ( {
<. x ,  y >.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
119, 10eqtri 2101 . 2  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
121, 11eqtri 2101 1  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601    i^i cin 2972   {copab 3838    X. cxp 4361    |` cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-rel 4370  df-res 4375
This theorem is referenced by:  resopab2  4675  opabresid  4679  mptpreima  4834  isarep2  5006  resoprab  5617  df1st2  5860  df2nd2  5861
  Copyright terms: Public domain W3C validator