ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 Unicode version

Theorem caubnd2 10003
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caubnd2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Distinct variable groups:    j, k, x, y, F    j, M, k, x    j, Z, k, x, y
Allowed substitution hint:    M( y)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 8738 . . 3  |-  1  e.  RR+
2 breq2 3789 . . . . . 6  |-  ( x  =  1  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
) )
32anbi2d 451 . . . . 5  |-  ( x  =  1  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
43rexralbidv 2392 . . . 4  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
54rspcv 2697 . . 3  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) ) )
61, 5ax-mp 7 . 2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) )
7 eluzelz 8628 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
8 cau3.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
97, 8eleq2s 2173 . . . . . . . . . 10  |-  ( j  e.  Z  ->  j  e.  ZZ )
10 uzid 8633 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
119, 10syl 14 . . . . . . . . 9  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
12 simpl 107 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1312ralimi 2426 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
14 fveq2 5198 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1514eleq1d 2147 . . . . . . . . . 10  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1615rspcva 2699 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )  ->  ( F `  j )  e.  CC )
1711, 13, 16syl2an 283 . . . . . . . 8  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( F `  j )  e.  CC )
18 abscl 9937 . . . . . . . 8  |-  ( ( F `  j )  e.  CC  ->  ( abs `  ( F `  j ) )  e.  RR )
1917, 18syl 14 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( abs `  ( F `  j ) )  e.  RR )
20 1re 7118 . . . . . . 7  |-  1  e.  RR
21 readdcl 7099 . . . . . . 7  |-  ( ( ( abs `  ( F `  j )
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( F `  j )
)  +  1 )  e.  RR )
2219, 20, 21sylancl 404 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( abs `  ( F `  j )
)  +  1 )  e.  RR )
23 simpr 108 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
24 simplr 496 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  j )  e.  CC )
25 abs2dif 9992 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
2623, 24, 25syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <_  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
27 abscl 9937 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( F `  k ) )  e.  RR )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  k )
)  e.  RR )
2924, 18syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  j )
)  e.  RR )
3028, 29resubcld 7485 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  e.  RR )
3123, 24subcld 7419 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( F `
 k )  -  ( F `  j ) )  e.  CC )
32 abscl 9937 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  e.  RR )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  e.  RR )
34 lelttr 7199 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3520, 34mp3an3 1257 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3630, 33, 35syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3726, 36mpand 419 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1 ) )
38 ltsubadd2 7537 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR  /\  1  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
3920, 38mp3an3 1257 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <  1  <->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4028, 29, 39syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( F `
 k ) )  -  ( abs `  ( F `  j )
) )  <  1  <->  ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4137, 40sylibd 147 . . . . . . . . . 10  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4241expimpd 355 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4342ralimdv 2430 . . . . . . . 8  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4443impancom 256 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( F `  j
)  e.  CC  ->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4517, 44mpd 13 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) )
46 breq2 3789 . . . . . . . 8  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( ( abs `  ( F `  k ) )  < 
y  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4746ralbidv 2368 . . . . . . 7  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y  <->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4847rspcev 2701 . . . . . 6  |-  ( ( ( ( abs `  ( F `  j )
)  +  1 )  e.  RR  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
4922, 45, 48syl2anc 403 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5049ex 113 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
) )
5150reximia 2456 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
52 rexcom 2518 . . 3  |-  ( E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y  <->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5351, 52sylib 120 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
546, 53syl 14 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    - cmin 7279   ZZcz 8351   ZZ>=cuz 8619   RR+crp 8734   abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator