ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm Unicode version

Theorem ltexprlemm 6790
Description: Our constructed difference is inhabited. Lemma for ltexpri 6803. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemm  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemm
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6695 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
21brel 4410 . . . . . . . 8  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltdfpr 6696 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) ) )
43biimpd 142 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )
52, 4mpcom 36 . . . . . . 7  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) )
6 simprrl 505 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 2nd `  A ) )
72simprd 112 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
8 prop 6665 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 prnmaxl 6678 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
108, 9sylan 277 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
11 ltexnqi 6599 . . . . . . . . . . . . . . . . . 18  |-  ( y 
<Q  w  ->  E. q  e.  Q.  ( y  +Q  q )  =  w )
1211reximi 2458 . . . . . . . . . . . . . . . . 17  |-  ( E. w  e.  ( 1st `  B ) y  <Q  w  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q
)  =  w )
1310, 12syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  (
y  +Q  q )  =  w )
14 df-rex 2354 . . . . . . . . . . . . . . . 16  |-  ( E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q )  =  w  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1513, 14sylib 120 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
16 r19.42v 2511 . . . . . . . . . . . . . . . 16  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  <->  ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1716exbii 1536 . . . . . . . . . . . . . . 15  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1815, 17sylibr 132 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w ) )
19 eleq1 2141 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  q )  =  w  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  <->  w  e.  ( 1st `  B ) ) )
2019biimparc 293 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  -> 
( y  +Q  q
)  e.  ( 1st `  B ) )
2120reximi 2458 . . . . . . . . . . . . . . 15  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2221exlimiv 1529 . . . . . . . . . . . . . 14  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2318, 22syl 14 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
247, 23sylan 277 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2524adantrl 461 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2625adantrl 461 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
276, 26jca 300 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
( y  e.  ( 2nd `  A )  /\  E. q  e. 
Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
2827expr 367 . . . . . . . 8  |-  ( ( A  <P  B  /\  y  e.  Q. )  ->  ( ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) )  ->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
2928reximdva 2463 . . . . . . 7  |-  ( A 
<P  B  ->  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B
) )  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
305, 29mpd 13 . . . . . 6  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
31 r19.42v 2511 . . . . . . 7  |-  ( E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3231rexbii 2373 . . . . . 6  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3330, 32sylibr 132 . . . . 5  |-  ( A 
<P  B  ->  E. y  e.  Q.  E. q  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
34 rexcom 2518 . . . . 5  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3533, 34sylib 120 . . . 4  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
362simpld 110 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  A  e. 
P. )
37 prop 6665 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
38 elprnqu 6672 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
3937, 38sylan 277 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4036, 39sylan 277 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4140ex 113 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  ->  y  e.  Q. ) )
4241pm4.71rd 386 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  <->  ( y  e. 
Q.  /\  y  e.  ( 2nd `  A ) ) ) )
4342anbi1d 452 . . . . . . . 8  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( (
y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) ) ) )
44 anass 393 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4543, 44syl6bb 194 . . . . . . 7  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
4645exbidv 1746 . . . . . 6  |-  ( A 
<P  B  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. y ( y  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) ) )
4746rexbidv 2369 . . . . 5  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y ( y  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
48 df-rex 2354 . . . . . 6  |-  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y
( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4948rexbii 2373 . . . . 5  |-  ( E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5047, 49syl6bbr 196 . . . 4  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) )
5135, 50mpbird 165 . . 3  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) )
52 ltexprlem.1 . . . . . 6  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
5352ltexprlemell 6788 . . . . 5  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5453rexbii 2373 . . . 4  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
55 ssid 3018 . . . . 5  |-  Q.  C_  Q.
56 rexss 3061 . . . . 5  |-  ( Q.  C_  Q.  ->  ( E. q  e.  Q.  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
5755, 56ax-mp 7 . . . 4  |-  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5854, 57bitr4i 185 . . 3  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
5951, 58sylibr 132 . 2  |-  ( A 
<P  B  ->  E. q  e.  Q.  q  e.  ( 1st `  C ) )
60 nfv 1461 . . 3  |-  F/ r  A  <P  B
61 nfre1 2407 . . 3  |-  F/ r E. r  e.  Q.  r  e.  ( 2nd `  C )
62 prmu 6668 . . . . 5  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
63 rexex 2410 . . . . 5  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  B
)  ->  E. r 
r  e.  ( 2nd `  B ) )
6462, 63syl 14 . . . 4  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  r  e.  ( 2nd `  B
) )
657, 8, 643syl 17 . . 3  |-  ( A 
<P  B  ->  E. r 
r  e.  ( 2nd `  B ) )
66 elprnqu 6672 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
678, 66sylan 277 . . . . . 6  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
687, 67sylan 277 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
69 prml 6667 . . . . . . . . 9  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
7037, 69syl 14 . . . . . . . 8  |-  ( A  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
71 rexex 2410 . . . . . . . 8  |-  ( E. y  e.  Q.  y  e.  ( 1st `  A
)  ->  E. y 
y  e.  ( 1st `  A ) )
7236, 70, 713syl 17 . . . . . . 7  |-  ( A 
<P  B  ->  E. y 
y  e.  ( 1st `  A ) )
7372adantr 270 . . . . . 6  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. y  y  e.  ( 1st `  A ) )
74683adant3 958 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  Q. )
75 simp3 940 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  ( 1st `  A
) )
76 elprnql 6671 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7737, 76sylan 277 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7836, 77sylan 277 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
79783adant2 957 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  Q. )
80 addcomnqg 6571 . . . . . . . . . . . 12  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  ( r  +Q  y
)  =  ( y  +Q  r ) )
8174, 79, 80syl2anc 403 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  =  ( y  +Q  r ) )
82 ltaddnq 6597 . . . . . . . . . . . . 13  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  r  <Q  ( r  +Q  y ) )
8374, 79, 82syl2anc 403 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  <Q  ( r  +Q  y
) )
84 prcunqu 6675 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
858, 84sylan 277 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
867, 85sylan 277 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
87863adant3 958 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  <Q  ( r  +Q  y )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) ) )
8883, 87mpd 13 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) )
8981, 88eqeltrrd 2156 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
y  +Q  r )  e.  ( 2nd `  B
) )
90 19.8a 1522 . . . . . . . . . 10  |-  ( ( y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9175, 89, 90syl2anc 403 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9274, 91jca 300 . . . . . . . 8  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9352ltexprlemelu 6789 . . . . . . . 8  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9492, 93sylibr 132 . . . . . . 7  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  ( 2nd `  C
) )
95943expa 1138 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  /\  y  e.  ( 1st `  A ) )  -> 
r  e.  ( 2nd `  C ) )
9673, 95exlimddv 1819 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  ( 2nd `  C ) )
97 19.8a 1522 . . . . 5  |-  ( ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
9868, 96, 97syl2anc 403 . . . 4  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
99 df-rex 2354 . . . 4  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  C
)  <->  E. r ( r  e.  Q.  /\  r  e.  ( 2nd `  C
) ) )
10098, 99sylibr 132 . . 3  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10160, 61, 65, 100exlimdd 1793 . 2  |-  ( A 
<P  B  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10259, 101jca 300 1  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   {crab 2352    C_ wss 2973   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    +Q cplq 6472    <Q cltq 6475   P.cnp 6481    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltexprlempr  6798
  Copyright terms: Public domain W3C validator