| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcomprg | Unicode version | ||
| Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mulcomprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 6665 |
. . . . . . . . 9
| |
| 2 | elprnql 6671 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sylan 277 |
. . . . . . . 8
|
| 4 | prop 6665 |
. . . . . . . . . . . . 13
| |
| 5 | elprnql 6671 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | sylan 277 |
. . . . . . . . . . . 12
|
| 7 | mulcomnqg 6573 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eqeq2d 2092 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | sylan2 280 |
. . . . . . . . . . 11
|
| 10 | 9 | anassrs 392 |
. . . . . . . . . 10
|
| 11 | 10 | rexbidva 2365 |
. . . . . . . . 9
|
| 12 | 11 | ancoms 264 |
. . . . . . . 8
|
| 13 | 3, 12 | sylan2 280 |
. . . . . . 7
|
| 14 | 13 | anassrs 392 |
. . . . . 6
|
| 15 | 14 | rexbidva 2365 |
. . . . 5
|
| 16 | rexcom 2518 |
. . . . 5
| |
| 17 | 15, 16 | syl6bb 194 |
. . . 4
|
| 18 | 17 | rabbidv 2593 |
. . 3
|
| 19 | elprnqu 6672 |
. . . . . . . . 9
| |
| 20 | 1, 19 | sylan 277 |
. . . . . . . 8
|
| 21 | elprnqu 6672 |
. . . . . . . . . . . . 13
| |
| 22 | 4, 21 | sylan 277 |
. . . . . . . . . . . 12
|
| 23 | 22, 8 | sylan2 280 |
. . . . . . . . . . 11
|
| 24 | 23 | anassrs 392 |
. . . . . . . . . 10
|
| 25 | 24 | rexbidva 2365 |
. . . . . . . . 9
|
| 26 | 25 | ancoms 264 |
. . . . . . . 8
|
| 27 | 20, 26 | sylan2 280 |
. . . . . . 7
|
| 28 | 27 | anassrs 392 |
. . . . . 6
|
| 29 | 28 | rexbidva 2365 |
. . . . 5
|
| 30 | rexcom 2518 |
. . . . 5
| |
| 31 | 29, 30 | syl6bb 194 |
. . . 4
|
| 32 | 31 | rabbidv 2593 |
. . 3
|
| 33 | 18, 32 | opeq12d 3578 |
. 2
|
| 34 | mpvlu 6729 |
. . 3
| |
| 35 | 34 | ancoms 264 |
. 2
|
| 36 | mpvlu 6729 |
. 2
| |
| 37 | 33, 35, 36 | 3eqtr4rd 2124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-mi 6496 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-mqqs 6540 df-inp 6656 df-imp 6659 |
| This theorem is referenced by: ltmprr 6832 mulcmpblnrlemg 6917 mulcomsrg 6934 mulasssrg 6935 m1m1sr 6938 recexgt0sr 6950 mulgt0sr 6954 mulextsr1lem 6956 recidpirqlemcalc 7025 |
| Copyright terms: Public domain | W3C validator |