ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomprg Unicode version

Theorem mulcomprg 6770
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
mulcomprg  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )

Proof of Theorem mulcomprg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 elprnql 6671 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  z  e.  ( 1st `  B ) )  -> 
z  e.  Q. )
31, 2sylan 277 . . . . . . . 8  |-  ( ( B  e.  P.  /\  z  e.  ( 1st `  B ) )  -> 
z  e.  Q. )
4 prop 6665 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 6671 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
64, 5sylan 277 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7 mulcomnqg 6573 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( z  .Q  y
)  =  ( y  .Q  z ) )
87eqeq2d 2092 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( x  =  ( z  .Q  y )  <-> 
x  =  ( y  .Q  z ) ) )
96, 8sylan2 280 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  ( A  e.  P.  /\  y  e.  ( 1st `  A ) ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
109anassrs 392 . . . . . . . . . 10  |-  ( ( ( z  e.  Q.  /\  A  e.  P. )  /\  y  e.  ( 1st `  A ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
1110rexbidva 2365 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  A  e.  P. )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1211ancoms 264 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  Q. )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
133, 12sylan2 280 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  z  e.  ( 1st `  B ) ) )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1413anassrs 392 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  z  e.  ( 1st `  B ) )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1514rexbidva 2365 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z
) ) )
16 rexcom 2518 . . . . 5  |-  ( E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A
) x  =  ( y  .Q  z )  <->  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) )
1715, 16syl6bb 194 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) ) )
1817rabbidv 2593 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( z  .Q  y ) }  =  { x  e. 
Q.  |  E. y  e.  ( 1st `  A
) E. z  e.  ( 1st `  B
) x  =  ( y  .Q  z ) } )
19 elprnqu 6672 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  z  e.  ( 2nd `  B ) )  -> 
z  e.  Q. )
201, 19sylan 277 . . . . . . . 8  |-  ( ( B  e.  P.  /\  z  e.  ( 2nd `  B ) )  -> 
z  e.  Q. )
21 elprnqu 6672 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
224, 21sylan 277 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2322, 8sylan2 280 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  ( A  e.  P.  /\  y  e.  ( 2nd `  A ) ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
2423anassrs 392 . . . . . . . . . 10  |-  ( ( ( z  e.  Q.  /\  A  e.  P. )  /\  y  e.  ( 2nd `  A ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
2524rexbidva 2365 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  A  e.  P. )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2625ancoms 264 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  Q. )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2720, 26sylan2 280 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  z  e.  ( 2nd `  B ) ) )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2827anassrs 392 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  z  e.  ( 2nd `  B ) )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2928rexbidva 2365 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z
) ) )
30 rexcom 2518 . . . . 5  |-  ( E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A
) x  =  ( y  .Q  z )  <->  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) )
3129, 30syl6bb 194 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) ) )
3231rabbidv 2593 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A ) x  =  ( z  .Q  y ) }  =  { x  e. 
Q.  |  E. y  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  B
) x  =  ( y  .Q  z ) } )
3318, 32opeq12d 3578 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. { x  e.  Q.  |  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( z  .Q  y ) } ,  { x  e. 
Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >.  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) } ,  {
x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) } >. )
34 mpvlu 6729 . . 3  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >. )
3534ancoms 264 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  .P.  A
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >. )
36 mpvlu 6729 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A
) E. z  e.  ( 1st `  B
) x  =  ( y  .Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  B
) x  =  ( y  .Q  z ) } >. )
3733, 35, 363eqtr4rd 2124 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E.wrex 2349   {crab 2352   <.cop 3401   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    .Q cmq 6473   P.cnp 6481    .P. cmp 6484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-mqqs 6540  df-inp 6656  df-imp 6659
This theorem is referenced by:  ltmprr  6832  mulcmpblnrlemg  6917  mulcomsrg  6934  mulasssrg  6935  m1m1sr  6938  recexgt0sr  6950  mulgt0sr  6954  mulextsr1lem  6956  recidpirqlemcalc  7025
  Copyright terms: Public domain W3C validator