ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2va Unicode version

Theorem rspc2va 2714
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
Hypotheses
Ref Expression
rspc2v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc2v.2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
rspc2va  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
Distinct variable groups:    x, y, A   
y, B    x, C    x, D, y    ch, x    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    B( x)    C( y)

Proof of Theorem rspc2va
StepHypRef Expression
1 rspc2v.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
2 rspc2v.2 . . 3  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
31, 2rspc2v 2713 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps ) )
43imp 122 1  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603
This theorem is referenced by:  swopo  4061  ordtri2orexmid  4266  onsucelsucexmid  4273  ordsucunielexmid  4274  ordtri2or2exmid  4314  isocnv  5471  isotr  5476  off  5744  caofrss  5755  iseqcaopr2  9461  iseqdistr  9470  isprm6  10526
  Copyright terms: Public domain W3C validator