| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqdistr | Unicode version | ||
| Description: The distributive property for series. (Contributed by Jim Kingdon, 21-Aug-2021.) |
| Ref | Expression |
|---|---|
| iseqdistr.1 |
|
| iseqdistr.2 |
|
| iseqdistr.3 |
|
| iseqdistr.4 |
|
| iseqdistr.5 |
|
| iseqdistr.s |
|
| iseqdistr.t |
|
| iseqdistr.f |
|
| iseqdistr.c |
|
| Ref | Expression |
|---|---|
| iseqdistr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqdistr.1 |
. . 3
| |
| 2 | iseqdistr.4 |
. . 3
| |
| 3 | iseqdistr.s |
. . 3
| |
| 4 | iseqdistr.3 |
. . 3
| |
| 5 | iseqdistr.2 |
. . . 4
| |
| 6 | iseqdistr.c |
. . . . . . 7
| |
| 7 | 6 | adantr 270 |
. . . . . 6
|
| 8 | iseqdistr.t |
. . . . . . . . 9
| |
| 9 | 8 | ralrimivva 2443 |
. . . . . . . 8
|
| 10 | oveq1 5539 |
. . . . . . . . . 10
| |
| 11 | 10 | eleq1d 2147 |
. . . . . . . . 9
|
| 12 | oveq2 5540 |
. . . . . . . . . 10
| |
| 13 | 12 | eleq1d 2147 |
. . . . . . . . 9
|
| 14 | 11, 13 | cbvral2v 2585 |
. . . . . . . 8
|
| 15 | 9, 14 | sylib 120 |
. . . . . . 7
|
| 16 | 15 | adantr 270 |
. . . . . 6
|
| 17 | oveq1 5539 |
. . . . . . . 8
| |
| 18 | 17 | eleq1d 2147 |
. . . . . . 7
|
| 19 | oveq2 5540 |
. . . . . . . 8
| |
| 20 | 19 | eleq1d 2147 |
. . . . . . 7
|
| 21 | 18, 20 | rspc2va 2714 |
. . . . . 6
|
| 22 | 7, 1, 16, 21 | syl21anc 1168 |
. . . . 5
|
| 23 | oveq2 5540 |
. . . . . 6
| |
| 24 | eqid 2081 |
. . . . . 6
| |
| 25 | 23, 24 | fvmptg 5269 |
. . . . 5
|
| 26 | 1, 22, 25 | syl2anc 403 |
. . . 4
|
| 27 | simprl 497 |
. . . . . 6
| |
| 28 | oveq2 5540 |
. . . . . . . . 9
| |
| 29 | 28 | eleq1d 2147 |
. . . . . . . 8
|
| 30 | 18, 29 | rspc2va 2714 |
. . . . . . 7
|
| 31 | 7, 27, 16, 30 | syl21anc 1168 |
. . . . . 6
|
| 32 | oveq2 5540 |
. . . . . . 7
| |
| 33 | 32, 24 | fvmptg 5269 |
. . . . . 6
|
| 34 | 27, 31, 33 | syl2anc 403 |
. . . . 5
|
| 35 | simprr 498 |
. . . . . 6
| |
| 36 | oveq2 5540 |
. . . . . . . . 9
| |
| 37 | 36 | eleq1d 2147 |
. . . . . . . 8
|
| 38 | 18, 37 | rspc2va 2714 |
. . . . . . 7
|
| 39 | 7, 35, 16, 38 | syl21anc 1168 |
. . . . . 6
|
| 40 | oveq2 5540 |
. . . . . . 7
| |
| 41 | 40, 24 | fvmptg 5269 |
. . . . . 6
|
| 42 | 35, 39, 41 | syl2anc 403 |
. . . . 5
|
| 43 | 34, 42 | oveq12d 5550 |
. . . 4
|
| 44 | 5, 26, 43 | 3eqtr4d 2123 |
. . 3
|
| 45 | iseqdistr.5 |
. . . . . 6
| |
| 46 | iseqdistr.f |
. . . . . 6
| |
| 47 | 45, 46 | eqeltrrd 2156 |
. . . . 5
|
| 48 | oveq2 5540 |
. . . . . 6
| |
| 49 | 48, 24 | fvmptg 5269 |
. . . . 5
|
| 50 | 2, 47, 49 | syl2anc 403 |
. . . 4
|
| 51 | 50, 45 | eqtr4d 2116 |
. . 3
|
| 52 | 1, 2, 3, 4, 44, 51, 46, 1 | iseqhomo 9468 |
. 2
|
| 53 | 4, 3, 2, 1 | iseqcl 9443 |
. . 3
|
| 54 | 8, 6, 53 | caovcld 5674 |
. . 3
|
| 55 | oveq2 5540 |
. . . 4
| |
| 56 | 55, 24 | fvmptg 5269 |
. . 3
|
| 57 | 53, 54, 56 | syl2anc 403 |
. 2
|
| 58 | 52, 57 | eqtr3d 2115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-iseq 9432 |
| This theorem is referenced by: iisermulc2 10178 |
| Copyright terms: Public domain | W3C validator |