ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrap Unicode version

Theorem sqrt2irrap 10558
Description: The square root of 2 is irrational. That is, for any rational number,  ( sqr `  2
) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 10541. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irrap  |-  ( Q  e.  QQ  ->  ( sqr `  2 ) #  Q
)

Proof of Theorem sqrt2irrap
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 8707 . . 3  |-  ( Q  e.  QQ  <->  E. a  e.  ZZ  E. b  e.  NN  Q  =  ( a  /  b ) )
21biimpi 118 . 2  |-  ( Q  e.  QQ  ->  E. a  e.  ZZ  E. b  e.  NN  Q  =  ( a  /  b ) )
3 simplrl 501 . . . . . . . . 9  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  a  e.  ZZ )
43adantr 270 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  e.  ZZ )
5 simplrr 502 . . . . . . . . 9  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  b  e.  NN )
65adantr 270 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b  e.  NN )
7 znq 8709 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  NN )  ->  ( a  /  b
)  e.  QQ )
8 qre 8710 . . . . . . . . 9  |-  ( ( a  /  b )  e.  QQ  ->  (
a  /  b )  e.  RR )
97, 8syl 14 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  NN )  ->  ( a  /  b
)  e.  RR )
104, 6, 9syl2anc 403 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  e.  RR )
11 sqrt2re 10542 . . . . . . . 8  |-  ( sqr `  2 )  e.  RR
1211a1i 9 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( sqr `  2 )  e.  RR )
13 0red 7120 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  e.  RR )
144zcnd 8470 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  e.  CC )
156nncnd 8053 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b  e.  CC )
166nnap0d 8084 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b #  0
)
1714, 15, 16divrecapd 7880 . . . . . . . . 9  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  =  ( a  x.  (
1  /  b ) ) )
184zred 8469 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  e.  RR )
196nnrecred 8085 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( 1  /  b )  e.  RR )
20 simpr 108 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  <_  0 )
21 1red 7134 . . . . . . . . . . 11  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  1  e.  RR )
226nnrpd 8772 . . . . . . . . . . 11  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b  e.  RR+ )
23 0le1 7585 . . . . . . . . . . . 12  |-  0  <_  1
2423a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  <_  1 )
2521, 22, 24divge0d 8814 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  <_  ( 1  /  b ) )
26 mulle0r 8022 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  ( 1  /  b
)  e.  RR )  /\  ( a  <_ 
0  /\  0  <_  ( 1  /  b ) ) )  ->  (
a  x.  ( 1  /  b ) )  <_  0 )
2718, 19, 20, 25, 26syl22anc 1170 . . . . . . . . 9  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  x.  ( 1  /  b
) )  <_  0
)
2817, 27eqbrtrd 3805 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  <_ 
0 )
29 2re 8109 . . . . . . . . . 10  |-  2  e.  RR
30 2pos 8130 . . . . . . . . . 10  |-  0  <  2
3129, 30sqrtgt0ii 10017 . . . . . . . . 9  |-  0  <  ( sqr `  2
)
3231a1i 9 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  <  ( sqr `  2 ) )
3310, 13, 12, 28, 32lelttrd 7234 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  < 
( sqr `  2
) )
3410, 12, 33gtapd 7735 . . . . . 6  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( sqr `  2 ) #  ( a  /  b ) )
353adantr 270 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  a  e.  ZZ )
36 simpr 108 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  0  <  a )
37 elnnz 8361 . . . . . . . 8  |-  ( a  e.  NN  <->  ( a  e.  ZZ  /\  0  < 
a ) )
3835, 36, 37sylanbrc 408 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  a  e.  NN )
395adantr 270 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  b  e.  NN )
40 sqrt2irraplemnn 10557 . . . . . . 7  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  ( sqr `  2
) #  ( a  / 
b ) )
4138, 39, 40syl2anc 403 . . . . . 6  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  ( sqr `  2 ) #  ( a  /  b ) )
42 0z 8362 . . . . . . . . 9  |-  0  e.  ZZ
43 zlelttric 8396 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  0  e.  ZZ )  ->  ( a  <_  0  \/  0  <  a ) )
4442, 43mpan2 415 . . . . . . . 8  |-  ( a  e.  ZZ  ->  (
a  <_  0  \/  0  <  a ) )
4544ad2antrl 473 . . . . . . 7  |-  ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  ->  ( a  <_  0  \/  0  < 
a ) )
4645adantr 270 . . . . . 6  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  (
a  <_  0  \/  0  <  a ) )
4734, 41, 46mpjaodan 744 . . . . 5  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  ( sqr `  2 ) #  ( a  /  b ) )
48 simpr 108 . . . . 5  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  Q  =  ( a  / 
b ) )
4947, 48breqtrrd 3811 . . . 4  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  ( sqr `  2 ) #  Q
)
5049ex 113 . . 3  |-  ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  ->  ( Q  =  ( a  / 
b )  ->  ( sqr `  2 ) #  Q
) )
5150rexlimdvva 2484 . 2  |-  ( Q  e.  QQ  ->  ( E. a  e.  ZZ  E. b  e.  NN  Q  =  ( a  / 
b )  ->  ( sqr `  2 ) #  Q
) )
522, 51mpd 13 1  |-  ( Q  e.  QQ  ->  ( sqr `  2 ) #  Q
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    x. cmul 6986    < clt 7153    <_ cle 7154   # cap 7681    / cdiv 7760   NNcn 8039   2c2 8089   ZZcz 8351   QQcq 8704   sqrcsqrt 9882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-xor 1307  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339  df-prm 10490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator