ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemgt1 Unicode version

Theorem caucvgsrlemgt1 6971
Description: Lemma for caucvgsr 6978. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemgt1  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  i
)  +R  x ) ) ) ) )
Distinct variable groups:    j, F, k, l, u    i, F, x, j, k    m, F, n, k    n, l, u    y, F, i, j, x    ph, j,
k, x    ph, n    k, m, n
Allowed substitution hints:    ph( y, u, i, m, l)

Proof of Theorem caucvgsrlemgt1
Dummy variables  a  b  w  z  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . . . 4  |-  ( ph  ->  F : N. --> R. )
2 caucvgsr.cau . . . 4  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3 caucvgsrlemgt1.gt1 . . . 4  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
4 eqid 2081 . . . 4  |-  ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) )  =  ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
)
51, 2, 3, 4caucvgsrlemf 6968 . . 3  |-  ( ph  ->  ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) : N. --> P. )
61, 2, 3, 4caucvgsrlemcau 6969 . . 3  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  n
)  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
71, 2, 3, 4caucvgsrlembound 6970 . . 3  |-  ( ph  ->  A. m  e.  N.  1P  <P  ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  m ) )
85, 6, 7caucvgprpr 6902 . 2  |-  ( ph  ->  E. a  e.  P.  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) )
9 prsrcl 6960 . . . 4  |-  ( a  e.  P.  ->  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
109ad2antrl 473 . . 3  |-  ( (
ph  /\  ( a  e.  P.  /\  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) ) )  ->  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
11 srpospr 6959 . . . . . . . . . 10  |-  ( ( x  e.  R.  /\  0R  <R  x )  ->  E! c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )
12 riotacl 5502 . . . . . . . . . 10  |-  ( E! c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x  ->  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
1311, 12syl 14 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  0R  <R  x )  -> 
( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
1413adantll 459 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
15 simplrr 502 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  x  e.  R. )  ->  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) )
1615adantr 270 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) )
17 oveq2 5540 . . . . . . . . . . . . 13  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
a  +P.  b )  =  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) )
1817breq2d 3797 . . . . . . . . . . . 12  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  <->  ( (
z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )
19 oveq2 5540 . . . . . . . . . . . . 13  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )  =  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) )
2019breq2d 3797 . . . . . . . . . . . 12  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b )  <->  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )
2118, 20anbi12d 456 . . . . . . . . . . 11  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) )  <->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) )
2221imbi2d 228 . . . . . . . . . 10  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  (
( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) )  <-> 
( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) ) )
2322rexralbidv 2392 . . . . . . . . 9  |-  ( b  =  ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  ->  ( E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )  <->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) ) )
2423rspcva 2699 . . . . . . . 8  |-  ( ( ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) )  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) )
2514, 16, 24syl2anc 403 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) ) )
26 nfv 1461 . . . . . . . . . . 11  |-  F/ j
ph
27 nfv 1461 . . . . . . . . . . . 12  |-  F/ j  a  e.  P.
28 nfcv 2219 . . . . . . . . . . . . 13  |-  F/_ j P.
29 nfre1 2407 . . . . . . . . . . . . 13  |-  F/ j E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
3028, 29nfralya 2404 . . . . . . . . . . . 12  |-  F/ j A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
3127, 30nfan 1497 . . . . . . . . . . 11  |-  F/ j ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) )
3226, 31nfan 1497 . . . . . . . . . 10  |-  F/ j ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )
33 nfv 1461 . . . . . . . . . 10  |-  F/ j  x  e.  R.
3432, 33nfan 1497 . . . . . . . . 9  |-  F/ j ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )
35 nfv 1461 . . . . . . . . 9  |-  F/ j 0R  <R  x
3634, 35nfan 1497 . . . . . . . 8  |-  F/ j ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )
37 nfv 1461 . . . . . . . . . . . 12  |-  F/ k
ph
38 nfv 1461 . . . . . . . . . . . . 13  |-  F/ k  a  e.  P.
39 nfcv 2219 . . . . . . . . . . . . . 14  |-  F/_ k P.
40 nfcv 2219 . . . . . . . . . . . . . . 15  |-  F/_ k N.
41 nfra1 2397 . . . . . . . . . . . . . . 15  |-  F/ k A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) )
4240, 41nfrexya 2405 . . . . . . . . . . . . . 14  |-  F/ k E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
4339, 42nfralya 2404 . . . . . . . . . . . . 13  |-  F/ k A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) )
4438, 43nfan 1497 . . . . . . . . . . . 12  |-  F/ k ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) )
4537, 44nfan 1497 . . . . . . . . . . 11  |-  F/ k ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )
46 nfv 1461 . . . . . . . . . . 11  |-  F/ k  x  e.  R.
4745, 46nfan 1497 . . . . . . . . . 10  |-  F/ k ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )
48 nfv 1461 . . . . . . . . . 10  |-  F/ k 0R  <R  x
4947, 48nfan 1497 . . . . . . . . 9  |-  F/ k ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )
505ad4antr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) : N. --> P. )
51 simpr 108 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  k  e.  N. )
5250, 51ffvelrnd 5324 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  e.  P. )
53 simplrl 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  x  e.  R. )  ->  a  e.  P. )
5453adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  a  e.  P. )
55 addclpr 6727 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
5654, 14, 55syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
5756adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
58 prsrlt 6963 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  e.  P.  /\  ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
5952, 57, 58syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
601, 2, 3, 4caucvgsrlemfv 6967 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  N. )  ->  [ <. ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
6160adantlr 460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  k  e.  N. )  ->  [ <. (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
6261adantlr 460 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  k  e.  N. )  ->  [ <. ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
6362adantlr 460 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
64 prsradd 6962 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  [ <. (
( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
6554, 14, 64syl2anc 403 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
66 prsrriota 6964 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  R.  /\  0R  <R  x )  ->  [ <. ( ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  =  x )
6766oveq2d 5548 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  R.  /\  0R  <R  x )  -> 
( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  )  =  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x ) )
6867adantll 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  )  =  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x ) )
6965, 68eqtrd 2113 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) )
7069adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) )
7163, 70breq12d 3798 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  <->  ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
7259, 71bitrd 186 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
7354adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  a  e.  P. )
7414adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )
75 addclpr 6727 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
7652, 74, 75syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )
77 prsrlt 6963 . . . . . . . . . . . . 13  |-  ( ( a  e.  P.  /\  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  e. 
P. )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
7873, 76, 77syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  ) )
79 prsradd 6962 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  e.  P.  /\  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  e.  P. )  ->  [ <. (
( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
8052, 74, 79syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) )
8180breq2d 3797 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  +P. 
1P ) ,  1P >. ]  ~R  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) ) )
8266adantll 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  [ <. ( ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  =  x )
8382adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  [ <. ( ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  =  x )
8463, 83oveq12d 5550 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `  k )  +R  x ) )
8584breq2d 3797 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  ( [ <. ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( ( iota_ c  e. 
P.  [ <. (
c  +P.  1P ) ,  1P >. ]  ~R  =  x )  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  (
( F `  k
)  +R  x ) ) )
8678, 81, 853bitrd 212 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) )
8772, 86anbi12d 456 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) )  <-> 
( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) ) )
8887imbi2d 228 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  /\  k  e.  N. )  ->  (
( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )  <->  ( j  <N 
k  ->  ( ( F `  k )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) ) ) )
8949, 88ralbida 2362 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  ( iota_ c  e.  P.  [ <. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )  <->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) ) ) )
9036, 89rexbid 2367 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  ( E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) )  /\  a  <P  ( ( ( z  e.  N.  |->  (
iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  ( iota_ c  e.  P.  [
<. ( c  +P.  1P ) ,  1P >. ]  ~R  =  x ) ) ) )  <->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) ) ) )
9125, 90mpbid 145 . . . . . 6  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) ) )
92 breq2 3789 . . . . . . . . 9  |-  ( k  =  i  ->  (
j  <N  k  <->  j  <N  i ) )
93 fveq2 5198 . . . . . . . . . . 11  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
9493breq1d 3795 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  <->  ( F `  i )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
9593oveq1d 5547 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( F `  k
)  +R  x )  =  ( ( F `
 i )  +R  x ) )
9695breq2d 3797 . . . . . . . . . 10  |-  ( k  =  i  ->  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  (
( F `  k
)  +R  x )  <->  [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  <R  (
( F `  i
)  +R  x ) ) )
9794, 96anbi12d 456 . . . . . . . . 9  |-  ( k  =  i  ->  (
( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) )  <->  ( ( F `
 i )  <R 
( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
9892, 97imbi12d 232 . . . . . . . 8  |-  ( k  =  i  ->  (
( j  <N  k  ->  ( ( F `  k )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
)  /\  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k
)  +R  x ) ) )  <->  ( j  <N  i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
9998cbvralv 2577 . . . . . . 7  |-  ( A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) )  <->  A. i  e.  N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
10099rexbii 2373 . . . . . 6  |-  ( E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  k )  +R  x
) ) )  <->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
10191, 100sylib 120 . . . . 5  |-  ( ( ( ( ph  /\  ( a  e.  P.  /\ 
A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  <P  ( a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  +P.  b
) ) ) ) )  /\  x  e. 
R. )  /\  0R  <R  x )  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
102101ex 113 . . . 4  |-  ( ( ( ph  /\  (
a  e.  P.  /\  A. b  e.  P.  E. j  e.  N.  A. k  e.  N.  ( j  <N 
k  ->  ( (
( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  <P  ( a  +P.  b
)  /\  a  <P  ( ( ( z  e. 
N.  |->  ( iota_ w  e. 
P.  ( F `  z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k
)  +P.  b )
) ) ) )  /\  x  e.  R. )  ->  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
103102ralrimiva 2434 . . 3  |-  ( (
ph  /\  ( a  e.  P.  /\  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) ) )  ->  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
104 oveq1 5539 . . . . . . . . . 10  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( y  +R  x )  =  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x ) )
105104breq2d 3797 . . . . . . . . 9  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( F `  i
)  <R  ( y  +R  x )  <->  ( F `  i )  <R  ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  +R  x
) ) )
106 breq1 3788 . . . . . . . . 9  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( y  <R  ( ( F `  i )  +R  x )  <->  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i
)  +R  x ) ) )
107105, 106anbi12d 456 . . . . . . . 8  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( ( F `  i )  <R  (
y  +R  x )  /\  y  <R  (
( F `  i
)  +R  x ) )  <->  ( ( F `
 i )  <R 
( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) )
108107imbi2d 228 . . . . . . 7  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( j  <N  i  ->  ( ( F `  i )  <R  (
y  +R  x )  /\  y  <R  (
( F `  i
)  +R  x ) ) )  <->  ( j  <N  i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
109108rexralbidv 2392 . . . . . 6  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) )  <->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )
110109imbi2d 228 . . . . 5  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) )  <-> 
( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) ) )
111110ralbidv 2368 . . . 4  |-  ( y  =  [ <. (
a  +P.  1P ) ,  1P >. ]  ~R  ->  ( A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) )  <->  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) ) )
112111rspcev 2701 . . 3  |-  ( ( [ <. ( a  +P. 
1P ) ,  1P >. ]  ~R  e.  R.  /\ 
A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  +R  x )  /\  [ <. ( a  +P.  1P ) ,  1P >. ]  ~R  <R  ( ( F `  i )  +R  x
) ) ) ) )  ->  E. y  e.  R.  A. x  e. 
R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) ) )
11310, 103, 112syl2anc 403 . 2  |-  ( (
ph  /\  ( a  e.  P.  /\  A. b  e.  P.  E. j  e. 
N.  A. k  e.  N.  ( j  <N  k  ->  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `
 z )  =  [ <. ( w  +P.  1P ) ,  1P >. ]  ~R  ) ) `  k )  <P  (
a  +P.  b )  /\  a  <P  ( ( ( z  e.  N.  |->  ( iota_ w  e.  P.  ( F `  z )  =  [ <. (
w  +P.  1P ) ,  1P >. ]  ~R  )
) `  k )  +P.  b ) ) ) ) )  ->  E. y  e.  R.  A. x  e. 
R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i )  +R  x
) ) ) ) )
1148, 113rexlimddv 2481 1  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  i
)  +R  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   E!wreu 2350   <.cop 3401   class class class wbr 3785    |-> cmpt 3839   -->wf 4918   ` cfv 4922   iota_crio 5487  (class class class)co 5532   1oc1o 6017   [cec 6127   N.cnpi 6462    <N clti 6465    ~Q ceq 6469   *Qcrq 6474    <Q cltq 6475   P.cnp 6481   1Pc1p 6482    +P. cpp 6483    <P cltp 6485    ~R cer 6486   R.cnr 6487   0Rc0r 6488   1Rc1r 6489    +R cplr 6491    <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-iltp 6660  df-enr 6903  df-nr 6904  df-plr 6905  df-ltr 6907  df-0r 6908  df-1r 6909
This theorem is referenced by:  caucvgsrlemoffres  6976
  Copyright terms: Public domain W3C validator