ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplub2ti Unicode version

Theorem suplub2ti 6414
Description: Bidirectional form of suplubti 6413. (Contributed by Jim Kingdon, 17-Jan-2022.)
Hypotheses
Ref Expression
supmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
supclti.2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
suplub2ti.or  |-  ( ph  ->  R  Or  A )
suplub2ti.3  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
suplub2ti  |-  ( (
ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R
)  <->  E. z  e.  B  C R z ) )
Distinct variable groups:    u, A, v, x    y, A, x, z    x, B, y, z    u, R, v, x    y, R, z    ph, u, v, x    z, C
Allowed substitution hints:    ph( y, z)    B( v, u)    C( x, y, v, u)

Proof of Theorem suplub2ti
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 supmoti.ti . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 supclti.2 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
31, 2suplubti 6413 . . 3  |-  ( ph  ->  ( ( C  e.  A  /\  C R sup ( B ,  A ,  R )
)  ->  E. z  e.  B  C R
z ) )
43expdimp 255 . 2  |-  ( (
ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R
)  ->  E. z  e.  B  C R
z ) )
5 breq2 3789 . . . 4  |-  ( z  =  w  ->  ( C R z  <->  C R w ) )
65cbvrexv 2578 . . 3  |-  ( E. z  e.  B  C R z  <->  E. w  e.  B  C R w )
7 simplll 499 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  ph )
8 simplr 496 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  w  e.  B )
91, 2supubti 6412 . . . . . . 7  |-  ( ph  ->  ( w  e.  B  ->  -.  sup ( B ,  A ,  R
) R w ) )
107, 8, 9sylc 61 . . . . . 6  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  -.  sup ( B ,  A ,  R ) R w )
11 simpr 108 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  C R w )
12 suplub2ti.or . . . . . . . . 9  |-  ( ph  ->  R  Or  A )
1312ad3antrrr 475 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  R  Or  A )
14 simpllr 500 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  C  e.  A )
15 suplub2ti.3 . . . . . . . . . 10  |-  ( ph  ->  B  C_  A )
1615ad3antrrr 475 . . . . . . . . 9  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  B  C_  A )
1716, 8sseldd 3000 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  w  e.  A )
181, 2supclti 6411 . . . . . . . . 9  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  A )
1918ad3antrrr 475 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  sup ( B ,  A ,  R )  e.  A
)
20 sowlin 4075 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( C  e.  A  /\  w  e.  A  /\  sup ( B ,  A ,  R )  e.  A ) )  -> 
( C R w  ->  ( C R sup ( B ,  A ,  R )  \/  sup ( B ,  A ,  R ) R w ) ) )
2113, 14, 17, 19, 20syl13anc 1171 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  ( C R w  ->  ( C R sup ( B ,  A ,  R
)  \/  sup ( B ,  A ,  R ) R w ) ) )
2211, 21mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  ( C R sup ( B ,  A ,  R
)  \/  sup ( B ,  A ,  R ) R w ) )
2310, 22ecased 1280 . . . . 5  |-  ( ( ( ( ph  /\  C  e.  A )  /\  w  e.  B
)  /\  C R w )  ->  C R sup ( B ,  A ,  R )
)
2423ex 113 . . . 4  |-  ( ( ( ph  /\  C  e.  A )  /\  w  e.  B )  ->  ( C R w  ->  C R sup ( B ,  A ,  R )
) )
2524rexlimdva 2477 . . 3  |-  ( (
ph  /\  C  e.  A )  ->  ( E. w  e.  B  C R w  ->  C R sup ( B ,  A ,  R )
) )
266, 25syl5bi 150 . 2  |-  ( (
ph  /\  C  e.  A )  ->  ( E. z  e.  B  C R z  ->  C R sup ( B ,  A ,  R )
) )
274, 26impbid 127 1  |-  ( (
ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R
)  <->  E. z  e.  B  C R z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   class class class wbr 3785    Or wor 4050   supcsup 6395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iso 4052  df-iota 4887  df-riota 5488  df-sup 6397
This theorem is referenced by:  suprlubex  8030
  Copyright terms: Public domain W3C validator