![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrex | GIF version |
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
tfrex.1 | ⊢ 𝐹 = recs(𝐺) |
tfrex.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) |
Ref | Expression |
---|---|
tfrex | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrex.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
2 | 1 | fveq1i 5199 | . 2 ⊢ (𝐹‘𝐴) = (recs(𝐺)‘𝐴) |
3 | eqid 2081 | . . . 4 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} | |
4 | 3 | tfrlem3 5949 | . . 3 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
5 | tfrex.2 | . . 3 ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) | |
6 | 4, 5 | tfrexlem 5971 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (recs(𝐺)‘𝐴) ∈ V) |
7 | 2, 6 | syl5eqel 2165 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∈ wcel 1433 {cab 2067 ∀wral 2348 ∃wrex 2349 Vcvv 2601 Oncon0 4118 ↾ cres 4365 Fun wfun 4916 Fn wfn 4917 ‘cfv 4922 recscrecs 5942 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-recs 5943 |
This theorem is referenced by: rdgexggg 5987 |
Copyright terms: Public domain | W3C validator |