ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znege1 Unicode version

Theorem znege1 10556
Description: The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
Assertion
Ref Expression
znege1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )

Proof of Theorem znege1
StepHypRef Expression
1 zltp1le 8405 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
213adant3 958 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  <->  ( A  +  1 )  <_  B ) )
32biimpa 290 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( A  +  1 )  <_  B )
4 simpl1 941 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  ZZ )
54zred 8469 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  e.  RR )
6 1red 7134 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  e.  RR )
7 simpl2 942 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  ZZ )
87zred 8469 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  B  e.  RR )
95, 6, 8leaddsub2d 7647 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( ( A  + 
1 )  <_  B  <->  1  <_  ( B  -  A ) ) )
103, 9mpbid 145 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( B  -  A ) )
11 simpr 108 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <  B )
125, 8, 11ltled 7228 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  ->  A  <_  B )
135, 8, 12abssuble0d 10063 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
( abs `  ( A  -  B )
)  =  ( B  -  A ) )
1410, 13breqtrrd 3811 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  <  B )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
15 simpr 108 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =  B )
16 simpl3 943 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  A  =/=  B )
1715, 16pm2.21ddne 2328 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  A  =  B )  ->  1  <_  ( abs `  ( A  -  B
) ) )
18 simpr 108 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <  A )
19 simpl2 942 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  ZZ )
20 simpl1 941 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  ZZ )
21 zltp1le 8405 . . . . . 6  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  ( B  +  1 )  <_  A ) )
2219, 20, 21syl2anc 403 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  <  A  <->  ( B  +  1 )  <_  A ) )
2318, 22mpbid 145 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( B  +  1 )  <_  A )
2419zred 8469 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  e.  RR )
25 1red 7134 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  e.  RR )
2620zred 8469 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  A  e.  RR )
2724, 25, 26leaddsub2d 7647 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( ( B  + 
1 )  <_  A  <->  1  <_  ( A  -  B ) ) )
2823, 27mpbid 145 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( A  -  B ) )
2924, 26, 18ltled 7228 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  ->  B  <_  A )
3024, 26, 29abssubge0d 10062 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
( abs `  ( A  -  B )
)  =  ( A  -  B ) )
3128, 30breqtrrd 3811 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  /\  B  <  A )  -> 
1  <_  ( abs `  ( A  -  B
) ) )
32 ztri3or 8394 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
33323adant3 958 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
3414, 17, 31, 33mpjao3dan 1238 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  =/=  B )  ->  1  <_  ( abs `  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 918    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    - cmin 7279   ZZcz 8351   abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator