ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunv GIF version

Theorem nfunv 4953
Description: The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
Assertion
Ref Expression
nfunv ¬ Fun V

Proof of Theorem nfunv
StepHypRef Expression
1 0nelxp 4390 . . 3 ¬ ∅ ∈ (V × V)
2 0ex 3905 . . . 4 ∅ ∈ V
3 df-rel 4370 . . . . . 6 (Rel V ↔ V ⊆ (V × V))
43biimpi 118 . . . . 5 (Rel V → V ⊆ (V × V))
54sseld 2998 . . . 4 (Rel V → (∅ ∈ V → ∅ ∈ (V × V)))
62, 5mpi 15 . . 3 (Rel V → ∅ ∈ (V × V))
71, 6mto 620 . 2 ¬ Rel V
8 funrel 4939 . 2 (Fun V → Rel V)
97, 8mto 620 1 ¬ Fun V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1433  Vcvv 2601  wss 2973  c0 3251   × cxp 4361  Rel wrel 4368  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-rel 4370  df-fun 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator