ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqq GIF version

Theorem ltexnqq 6598
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
ltexnqq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnqq
Dummy variables 𝑓 𝑔 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6538 . . 3 Q = ((N × N) / ~Q )
2 breq1 3788 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q ))
3 oveq1 5539 . . . . . 6 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = (𝐴 +Q 𝑥))
43eqeq1d 2089 . . . . 5 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
54rexbidv 2369 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
62, 5imbi12d 232 . . 3 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )))
7 breq2 3789 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q 𝐵))
8 eqeq2 2090 . . . . 5 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = 𝐵))
98rexbidv 2369 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
107, 9imbi12d 232 . . 3 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)))
11 ordpipqqs 6564 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q ↔ (𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤)))
12 mulclpi 6518 . . . . . . . . 9 ((𝑦N𝑣N) → (𝑦 ·N 𝑣) ∈ N)
13 mulclpi 6518 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 𝑤) ∈ N)
1412, 13anim12i 331 . . . . . . . 8 (((𝑦N𝑣N) ∧ (𝑧N𝑤N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
1514an42s 553 . . . . . . 7 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
16 ltexpi 6527 . . . . . . 7 (((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1715, 16syl 14 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
18 df-rex 2354 . . . . . 6 (∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1917, 18syl6bb 194 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))))
20 simpll 495 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑦N𝑧N))
21 simpr 108 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑢N)
22 simpr 108 . . . . . . . . . . . . . . 15 ((𝑦N𝑧N) → 𝑧N)
23 simpr 108 . . . . . . . . . . . . . . 15 ((𝑤N𝑣N) → 𝑣N)
2422, 23anim12i 331 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑣N))
2524adantr 270 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N𝑣N))
26 mulclpi 6518 . . . . . . . . . . . . 13 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
2725, 26syl 14 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧 ·N 𝑣) ∈ N)
2820, 21, 27jca32 303 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
2928adantrr 462 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
30 addpipqqs 6560 . . . . . . . . . 10 (((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
3129, 30syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
32 simplll 499 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑦N)
33 simpllr 500 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑧N)
34 simplrr 502 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑣N)
35 mulcompig 6521 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
3635adantl 271 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
37 mulasspig 6522 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3837adantl 271 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3932, 33, 34, 36, 38caov12d 5702 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N (𝑧 ·N 𝑣)) = (𝑧 ·N (𝑦 ·N 𝑣)))
4039oveq1d 5547 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4132, 34, 12syl2anc 403 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N 𝑣) ∈ N)
42 simprl 497 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑢N)
43 distrpig 6523 . . . . . . . . . . . . . 14 ((𝑧N ∧ (𝑦 ·N 𝑣) ∈ N𝑢N) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4433, 41, 42, 43syl3anc 1169 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4540, 44eqtr4d 2116 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)))
4645opeq1d 3576 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩ = ⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩)
4746eceq1d 6165 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
48 simpllr 500 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑧N)
4912ad2ant2rl 494 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑦 ·N 𝑣) ∈ N)
50 addclpi 6517 . . . . . . . . . . . . . 14 (((𝑦 ·N 𝑣) ∈ N𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5149, 50sylan 277 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5248, 51, 273jca 1118 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
5352adantrr 462 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
54 mulcanenqec 6576 . . . . . . . . . . 11 ((𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5553, 54syl 14 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5647, 55eqtrd 2113 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
57 3anass 923 . . . . . . . . . . . . . 14 ((𝑧N𝑤N𝑣N) ↔ (𝑧N ∧ (𝑤N𝑣N)))
5857biimpri 131 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
5958adantll 459 . . . . . . . . . . . 12 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
6059anim1i 333 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
6160adantrl 461 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
62 opeq1 3570 . . . . . . . . . . . 12 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → ⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩ = ⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩)
6362eceq1d 6165 . . . . . . . . . . 11 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q )
64 mulcanenqec 6576 . . . . . . . . . . 11 ((𝑧N𝑤N𝑣N) → [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6563, 64sylan9eqr 2135 . . . . . . . . . 10 (((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6661, 65syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6731, 56, 663eqtrd 2117 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q )
6833, 34, 26syl2anc 403 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N 𝑣) ∈ N)
69 opelxpi 4394 . . . . . . . . . . . 12 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → ⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N))
70 enqex 6550 . . . . . . . . . . . . 13 ~Q ∈ V
7170ecelqsi 6183 . . . . . . . . . . . 12 (⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7269, 71syl 14 . . . . . . . . . . 11 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7342, 68, 72syl2anc 403 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7473, 1syl6eleqr 2172 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~QQ)
75 oveq2 5540 . . . . . . . . . . 11 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ))
7675eqeq1d 2089 . . . . . . . . . 10 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7776adantl 271 . . . . . . . . 9 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ 𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7874, 77rspcedv 2705 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
7967, 78mpd 13 . . . . . . 7 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )
8079ex 113 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8180exlimdv 1740 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8219, 81sylbid 148 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8311, 82sylbid 148 . . 3 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
841, 6, 10, 832ecoptocl 6217 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
85 ltaddnq 6597 . . . . 5 ((𝐴Q𝑥Q) → 𝐴 <Q (𝐴 +Q 𝑥))
86 breq2 3789 . . . . 5 ((𝐴 +Q 𝑥) = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑥) ↔ 𝐴 <Q 𝐵))
8785, 86syl5ibcom 153 . . . 4 ((𝐴Q𝑥Q) → ((𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8887rexlimdva 2477 . . 3 (𝐴Q → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8988adantr 270 . 2 ((𝐴Q𝐵Q) → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
9084, 89impbid 127 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wex 1421  wcel 1433  wrex 2349  cop 3401   class class class wbr 3785   × cxp 4361  (class class class)co 5532  [cec 6127   / cqs 6128  Ncnpi 6462   +N cpli 6463   ·N cmi 6464   <N clti 6465   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472   <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-ltnqqs 6543
This theorem is referenced by:  ltexnqi  6599  addlocpr  6726  ltexprlemopl  6791  ltexprlemopu  6793  ltexprlemrl  6800  ltexprlemru  6802  cauappcvgprlemopl  6836  caucvgprlemopl  6859  caucvgprprlemopl  6887
  Copyright terms: Public domain W3C validator