![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nqprxx | GIF version |
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprxx | ⊢ (𝐴 ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 𝐴}, {𝑥 ∣ 𝐴 <Q 𝑥}〉 ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqprm 6732 | . . 3 ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) | |
2 | ltrelnq 6555 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4410 | . . . . . 6 ⊢ (𝑥 <Q 𝐴 → (𝑥 ∈ Q ∧ 𝐴 ∈ Q)) |
4 | 3 | simpld 110 | . . . . 5 ⊢ (𝑥 <Q 𝐴 → 𝑥 ∈ Q) |
5 | 4 | abssi 3069 | . . . 4 ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q |
6 | 2 | brel 4410 | . . . . . 6 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
7 | 6 | simprd 112 | . . . . 5 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
8 | 7 | abssi 3069 | . . . 4 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
9 | 5, 8 | pm3.2i 266 | . . 3 ⊢ ({𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q) |
10 | 1, 9 | jctil 305 | . 2 ⊢ (𝐴 ∈ Q → (({𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
11 | nqprrnd 6733 | . . 3 ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) | |
12 | nqprdisj 6734 | . . 3 ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) | |
13 | nqprloc 6735 | . . 3 ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) | |
14 | 11, 12, 13 | 3jca 1118 | . 2 ⊢ (𝐴 ∈ Q → ((∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
15 | elinp 6664 | . 2 ⊢ (〈{𝑥 ∣ 𝑥 <Q 𝐴}, {𝑥 ∣ 𝐴 <Q 𝑥}〉 ∈ P ↔ ((({𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))))) | |
16 | 10, 14, 15 | sylanbrc 408 | 1 ⊢ (𝐴 ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 𝐴}, {𝑥 ∣ 𝐴 <Q 𝑥}〉 ∈ P) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 ∧ w3a 919 ∈ wcel 1433 {cab 2067 ∀wral 2348 ∃wrex 2349 ⊆ wss 2973 〈cop 3401 class class class wbr 3785 Qcnq 6470 <Q cltq 6475 Pcnp 6481 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-inp 6656 |
This theorem is referenced by: nqprlu 6737 |
Copyright terms: Public domain | W3C validator |