ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archrecpr GIF version

Theorem archrecpr 6854
Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
Assertion
Ref Expression
archrecpr (𝐴P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑙,𝑢
Allowed substitution hints:   𝐴(𝑢,𝑙)

Proof of Theorem archrecpr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prml 6667 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
31, 2syl 14 . . 3 (𝐴P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
4 archrecnq 6853 . . . . 5 (𝑥Q → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥)
54ad2antrl 473 . . . 4 ((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥)
61ad2antrr 471 . . . . . 6 (((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑗N) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 simplrr 502 . . . . . 6 (((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑗N) → 𝑥 ∈ (1st𝐴))
8 prcdnql 6674 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴)))
96, 7, 8syl2anc 403 . . . . 5 (((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴)))
109reximdva 2463 . . . 4 ((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → (∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑥 → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴)))
115, 10mpd 13 . . 3 ((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴))
123, 11rexlimddv 2481 . 2 (𝐴P → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴))
13 nnnq 6612 . . . . . 6 (𝑗N → [⟨𝑗, 1𝑜⟩] ~QQ)
14 recclnq 6582 . . . . . 6 ([⟨𝑗, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
1513, 14syl 14 . . . . 5 (𝑗N → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
1615adantl 271 . . . 4 ((𝐴P𝑗N) → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
17 simpl 107 . . . 4 ((𝐴P𝑗N) → 𝐴P)
18 nqprl 6741 . . . 4 (((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q𝐴P) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴) ↔ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝐴))
1916, 17, 18syl2anc 403 . . 3 ((𝐴P𝑗N) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴) ↔ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝐴))
2019rexbidva 2365 . 2 (𝐴P → (∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ (1st𝐴) ↔ ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝐴))
2112, 20mpbid 145 1 (𝐴P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  {cab 2067  wrex 2349  cop 3401   class class class wbr 3785  cfv 4922  1st c1st 5785  2nd c2nd 5786  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   ~Q ceq 6469  Qcnq 6470  *Qcrq 6474   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  caucvgprprlemlim  6901
  Copyright terms: Public domain W3C validator