ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds2 GIF version

Theorem finds2 4342
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1 (𝑥 = ∅ → (𝜑𝜓))
finds2.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds2.4 (𝜏𝜓)
finds2.5 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
Assertion
Ref Expression
finds2 (𝑥 ∈ ω → (𝜏𝜑))
Distinct variable groups:   𝑥,𝑦,𝜏   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5 (𝜏𝜓)
2 0ex 3905 . . . . . 6 ∅ ∈ V
3 finds2.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
43imbi2d 228 . . . . . 6 (𝑥 = ∅ → ((𝜏𝜑) ↔ (𝜏𝜓)))
52, 4elab 2738 . . . . 5 (∅ ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜓))
61, 5mpbir 144 . . . 4 ∅ ∈ {𝑥 ∣ (𝜏𝜑)}
7 finds2.5 . . . . . . 7 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
87a2d 26 . . . . . 6 (𝑦 ∈ ω → ((𝜏𝜒) → (𝜏𝜃)))
9 vex 2604 . . . . . . 7 𝑦 ∈ V
10 finds2.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1110imbi2d 228 . . . . . . 7 (𝑥 = 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜒)))
129, 11elab 2738 . . . . . 6 (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜒))
139sucex 4243 . . . . . . 7 suc 𝑦 ∈ V
14 finds2.3 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝜑𝜃))
1514imbi2d 228 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜃)))
1613, 15elab 2738 . . . . . 6 (suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜃))
178, 12, 163imtr4g 203 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)}))
1817rgen 2416 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})
19 peano5 4339 . . . 4 ((∅ ∈ {𝑥 ∣ (𝜏𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏𝜑)})
206, 18, 19mp2an 416 . . 3 ω ⊆ {𝑥 ∣ (𝜏𝜑)}
2120sseli 2995 . 2 (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏𝜑)})
22 abid 2069 . 2 (𝑥 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜑))
2321, 22sylib 120 1 (𝑥 ∈ ω → (𝜏𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wss 2973  c0 3251  suc csuc 4120  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by:  finds1  4343  frecrdg  6015  freccl  6016  nnacl  6082  nnmcl  6083  nnacom  6086  nnaass  6087  nndi  6088  nnmass  6089  nnmsucr  6090  nnmcom  6091  nnsucsssuc  6094  nntri3or  6095  nnaordi  6104  nnaword  6107  nnmordi  6112  nnaordex  6123  prarloclem3  6687  frec2uzzd  9402  frec2uzuzd  9404  frec2uzrdg  9411
  Copyright terms: Public domain W3C validator