ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjth GIF version

Theorem cjth 9733
Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjth (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))

Proof of Theorem cjth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cju 8038 . . . 4 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
2 riotasbc 5503 . . . 4 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → [(𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
31, 2syl 14 . . 3 (𝐴 ∈ ℂ → [(𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
4 cjval 9732 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
54sbceq1d 2820 . . 3 (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ [(𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
63, 5mpbird 165 . 2 (𝐴 ∈ ℂ → [(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
7 riotacl 5502 . . . . 5 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) ∈ ℂ)
81, 7syl 14 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) ∈ ℂ)
94, 8eqeltrd 2155 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
10 oveq2 5540 . . . . . 6 (𝑥 = (∗‘𝐴) → (𝐴 + 𝑥) = (𝐴 + (∗‘𝐴)))
1110eleq1d 2147 . . . . 5 (𝑥 = (∗‘𝐴) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + (∗‘𝐴)) ∈ ℝ))
12 oveq2 5540 . . . . . . 7 (𝑥 = (∗‘𝐴) → (𝐴𝑥) = (𝐴 − (∗‘𝐴)))
1312oveq2d 5548 . . . . . 6 (𝑥 = (∗‘𝐴) → (i · (𝐴𝑥)) = (i · (𝐴 − (∗‘𝐴))))
1413eleq1d 2147 . . . . 5 (𝑥 = (∗‘𝐴) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
1511, 14anbi12d 456 . . . 4 (𝑥 = (∗‘𝐴) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)))
1615sbcieg 2846 . . 3 ((∗‘𝐴) ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)))
179, 16syl 14 . 2 (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)))
186, 17mpbid 145 1 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  ∃!wreu 2350  [wsbc 2815  cfv 4922  crio 5487  (class class class)co 5532  cc 6979  cr 6980  ici 6983   + caddc 6984   · cmul 6986  cmin 7279  ccj 9726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675  df-cj 9729
This theorem is referenced by:  recl  9740  crre  9744
  Copyright terms: Public domain W3C validator