ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5502
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3079 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5501 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sseldi 2997 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  ∃!wreu 2350  {crab 2352  crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  riotaprop  5511  riotass2  5514  riotass  5515  acexmidlemcase  5527  supclti  6411  caucvgsrlemcl  6965  caucvgsrlemgt1  6971  axcaucvglemcl  7061  subval  7300  subcl  7307  divvalap  7762  divclap  7766  lbcl  8024  divfnzn  8706  flqcl  9277  cjval  9732  cjth  9733  cjf  9734  oddpwdclemodd  10550  oddpwdclemdc  10551  oddpwdc  10552
  Copyright terms: Public domain W3C validator