ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnopg GIF version

Theorem dmsnopg 4812
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})

Proof of Theorem dmsnopg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . . . 6 𝑥 ∈ V
2 vex 2604 . . . . . 6 𝑦 ∈ V
31, 2opth1 3991 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
43exlimiv 1529 . . . 4 (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
5 opeq1 3570 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
6 opeq2 3571 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐵⟩)
76eqeq1d 2089 . . . . . 6 (𝑦 = 𝐵 → (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
87spcegv 2686 . . . . 5 (𝐵𝑉 → (⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩ → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
95, 8syl5 32 . . . 4 (𝐵𝑉 → (𝑥 = 𝐴 → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
104, 9impbid2 141 . . 3 (𝐵𝑉 → (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ 𝑥 = 𝐴))
111eldm2 4551 . . . 4 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
121, 2opex 3984 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 3414 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1413exbii 1536 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1511, 14bitri 182 . . 3 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
16 velsn 3415 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1710, 15, 163bitr4g 221 . 2 (𝐵𝑉 → (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ 𝑥 ∈ {𝐴}))
1817eqrdv 2079 1 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wex 1421  wcel 1433  {csn 3398  cop 3401  dom cdm 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-dm 4373
This theorem is referenced by:  dmpropg  4813  dmsnop  4814  rnsnopg  4819  elxp4  4828  fnsng  4967  funprg  4969  funtpg  4970  fntpg  4975
  Copyright terms: Public domain W3C validator