![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmsnopg | GIF version |
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopg | ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opth1 3991 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
4 | 3 | exlimiv 1529 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
5 | opeq1 3570 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉) | |
6 | opeq2 3571 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐵〉) | |
7 | 6 | eqeq1d 2089 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉)) |
8 | 7 | spcegv 2686 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
9 | 5, 8 | syl5 32 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥 = 𝐴 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
10 | 4, 9 | impbid2 141 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 𝑥 = 𝐴)) |
11 | 1 | eldm2 4551 | . . . 4 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
12 | 1, 2 | opex 3984 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V |
13 | 12 | elsn 3414 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
14 | 13 | exbii 1536 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
15 | 11, 14 | bitri 182 | . . 3 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
16 | velsn 3415 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
17 | 10, 15, 16 | 3bitr4g 221 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ 𝑥 ∈ {𝐴})) |
18 | 17 | eqrdv 2079 | 1 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∃wex 1421 ∈ wcel 1433 {csn 3398 〈cop 3401 dom cdm 4363 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-dm 4373 |
This theorem is referenced by: dmpropg 4813 dmsnop 4814 rnsnopg 4819 elxp4 4828 fnsng 4967 funprg 4969 funtpg 4970 fntpg 4975 |
Copyright terms: Public domain | W3C validator |