ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemmu GIF version

Theorem caucvgprprlemmu 6885
Description: Lemma for caucvgprpr 6902. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemmu (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐹,𝑟,𝑢   𝑡,𝐿   𝑞,𝑝,𝑟,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemmu
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4 (𝜑𝐹:NP)
2 1pi 6505 . . . . 5 1𝑜N
32a1i 9 . . . 4 (𝜑 → 1𝑜N)
41, 3ffvelrnd 5324 . . 3 (𝜑 → (𝐹‘1𝑜) ∈ P)
5 prop 6665 . . 3 ((𝐹‘1𝑜) ∈ P → ⟨(1st ‘(𝐹‘1𝑜)), (2nd ‘(𝐹‘1𝑜))⟩ ∈ P)
6 prmu 6668 . . 3 (⟨(1st ‘(𝐹‘1𝑜)), (2nd ‘(𝐹‘1𝑜))⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))
74, 5, 63syl 17 . 2 (𝜑 → ∃𝑥Q 𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))
8 simprl 497 . . . 4 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → 𝑥Q)
9 1nq 6556 . . . 4 1QQ
10 addclnq 6565 . . . 4 ((𝑥Q ∧ 1QQ) → (𝑥 +Q 1Q) ∈ Q)
118, 9, 10sylancl 404 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → (𝑥 +Q 1Q) ∈ Q)
122a1i 9 . . . . 5 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → 1𝑜N)
13 simprr 498 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → 𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))
144adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → (𝐹‘1𝑜) ∈ P)
15 nqpru 6742 . . . . . . . . 9 ((𝑥Q ∧ (𝐹‘1𝑜) ∈ P) → (𝑥 ∈ (2nd ‘(𝐹‘1𝑜)) ↔ (𝐹‘1𝑜)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
168, 14, 15syl2anc 403 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → (𝑥 ∈ (2nd ‘(𝐹‘1𝑜)) ↔ (𝐹‘1𝑜)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
1713, 16mpbid 145 . . . . . . 7 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → (𝐹‘1𝑜)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
18 ltaprg 6809 . . . . . . . . 9 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1918adantl 271 . . . . . . . 8 (((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
20 nqprlu 6737 . . . . . . . . 9 (𝑥Q → ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ∈ P)
218, 20syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ∈ P)
22 nqprlu 6737 . . . . . . . . 9 (1QQ → ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩ ∈ P)
239, 22mp1i 10 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩ ∈ P)
24 addcomprg 6768 . . . . . . . . 9 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2524adantl 271 . . . . . . . 8 (((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2619, 14, 21, 23, 25caovord2d 5690 . . . . . . 7 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ((𝐹‘1𝑜)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ↔ ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)))
2717, 26mpbid 145 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
28 df-1nqqs 6541 . . . . . . . . . . . . 13 1Q = [⟨1𝑜, 1𝑜⟩] ~Q
2928fveq2i 5201 . . . . . . . . . . . 12 (*Q‘1Q) = (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )
30 rec1nq 6585 . . . . . . . . . . . 12 (*Q‘1Q) = 1Q
3129, 30eqtr3i 2103 . . . . . . . . . . 11 (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) = 1Q
3231breq2i 3793 . . . . . . . . . 10 (𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q 1Q)
3332abbii 2194 . . . . . . . . 9 {𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q 1Q}
3431breq1i 3792 . . . . . . . . . 10 ((*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞 ↔ 1Q <Q 𝑞)
3534abbii 2194 . . . . . . . . 9 {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ 1Q <Q 𝑞}
3633, 35opeq12i 3575 . . . . . . . 8 ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩
3736oveq2i 5543 . . . . . . 7 ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)
3837a1i 9 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
39 addnqpr 6751 . . . . . . 7 ((𝑥Q ∧ 1QQ) → ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
408, 9, 39sylancl 404 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
4127, 38, 403brtr4d 3815 . . . . 5 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
42 fveq2 5198 . . . . . . . 8 (𝑟 = 1𝑜 → (𝐹𝑟) = (𝐹‘1𝑜))
43 opeq1 3570 . . . . . . . . . . . . 13 (𝑟 = 1𝑜 → ⟨𝑟, 1𝑜⟩ = ⟨1𝑜, 1𝑜⟩)
4443eceq1d 6165 . . . . . . . . . . . 12 (𝑟 = 1𝑜 → [⟨𝑟, 1𝑜⟩] ~Q = [⟨1𝑜, 1𝑜⟩] ~Q )
4544fveq2d 5202 . . . . . . . . . . 11 (𝑟 = 1𝑜 → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) = (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ))
4645breq2d 3797 . . . . . . . . . 10 (𝑟 = 1𝑜 → (𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )))
4746abbidv 2196 . . . . . . . . 9 (𝑟 = 1𝑜 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )})
4845breq1d 3795 . . . . . . . . . 10 (𝑟 = 1𝑜 → ((*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞))
4948abbidv 2196 . . . . . . . . 9 (𝑟 = 1𝑜 → {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞})
5047, 49opeq12d 3578 . . . . . . . 8 (𝑟 = 1𝑜 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
5142, 50oveq12d 5550 . . . . . . 7 (𝑟 = 1𝑜 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
5251breq1d 3795 . . . . . 6 (𝑟 = 1𝑜 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ ↔ ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
5352rspcev 2701 . . . . 5 ((1𝑜N ∧ ((𝐹‘1𝑜) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
5412, 41, 53syl2anc 403 . . . 4 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
55 breq2 3789 . . . . . . . . 9 (𝑢 = (𝑥 +Q 1Q) → (𝑝 <Q 𝑢𝑝 <Q (𝑥 +Q 1Q)))
5655abbidv 2196 . . . . . . . 8 (𝑢 = (𝑥 +Q 1Q) → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q (𝑥 +Q 1Q)})
57 breq1 3788 . . . . . . . . 9 (𝑢 = (𝑥 +Q 1Q) → (𝑢 <Q 𝑞 ↔ (𝑥 +Q 1Q) <Q 𝑞))
5857abbidv 2196 . . . . . . . 8 (𝑢 = (𝑥 +Q 1Q) → {𝑞𝑢 <Q 𝑞} = {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞})
5956, 58opeq12d 3578 . . . . . . 7 (𝑢 = (𝑥 +Q 1Q) → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
6059breq2d 3797 . . . . . 6 (𝑢 = (𝑥 +Q 1Q) → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
6160rexbidv 2369 . . . . 5 (𝑢 = (𝑥 +Q 1Q) → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
62 caucvgprpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6362fveq2i 5201 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
64 nqex 6553 . . . . . . . 8 Q ∈ V
6564rabex 3922 . . . . . . 7 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
6664rabex 3922 . . . . . . 7 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
6765, 66op2nd 5794 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
6863, 67eqtri 2101 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
6961, 68elrab2 2751 . . . 4 ((𝑥 +Q 1Q) ∈ (2nd𝐿) ↔ ((𝑥 +Q 1Q) ∈ Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
7011, 54, 69sylanbrc 408 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → (𝑥 +Q 1Q) ∈ (2nd𝐿))
71 eleq1 2141 . . . 4 (𝑡 = (𝑥 +Q 1Q) → (𝑡 ∈ (2nd𝐿) ↔ (𝑥 +Q 1Q) ∈ (2nd𝐿)))
7271rspcev 2701 . . 3 (((𝑥 +Q 1Q) ∈ Q ∧ (𝑥 +Q 1Q) ∈ (2nd𝐿)) → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
7311, 70, 72syl2anc 403 . 2 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1𝑜)))) → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
747, 73rexlimddv 2481 1 (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wrex 2349  {crab 2352  cop 3401   class class class wbr 3785  wf 4918  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   <N clti 6465   ~Q ceq 6469  Qcnq 6470  1Qc1q 6471   +Q cplq 6472  *Qcrq 6474   <Q cltq 6475  Pcnp 6481   +P cpp 6483  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660
This theorem is referenced by:  caucvgprprlemm  6886
  Copyright terms: Public domain W3C validator