ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzuzle GIF version

Theorem eluzuzle 8627
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
Assertion
Ref Expression
eluzuzle ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))

Proof of Theorem eluzuzle
StepHypRef Expression
1 eluz2 8625 . 2 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
2 simpll 495 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℤ)
3 simpr2 945 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℤ)
4 zre 8355 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
54ad2antrr 471 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℝ)
6 zre 8355 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
763ad2ant1 959 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐴 ∈ ℝ)
87adantl 271 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴 ∈ ℝ)
9 zre 8355 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
1093ad2ant2 960 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
1110adantl 271 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℝ)
12 simplr 496 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐴)
13 simpr3 946 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴𝐶)
145, 8, 11, 12, 13letrd 7233 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐶)
15 eluz2 8625 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
162, 3, 14, 15syl3anbrc 1122 . . 3 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ (ℤ𝐵))
1716ex 113 . 2 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ (ℤ𝐵)))
181, 17syl5bi 150 1 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wcel 1433   class class class wbr 3785  cfv 4922  cr 6980  cle 7154  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltwlin 7089
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-neg 7282  df-z 8352  df-uz 8620
This theorem is referenced by:  eluz2nn  8657  uzuzle23  8659  eluzge3nn  8660
  Copyright terms: Public domain W3C validator