ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfvf GIF version

Theorem ffnfvf 5345
Description: A function maps to a class to which all values belong. This version of ffnfv 5344 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1 𝑥𝐴
ffnfvf.2 𝑥𝐵
ffnfvf.3 𝑥𝐹
Assertion
Ref Expression
ffnfvf (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem ffnfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffnfv 5344 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵))
2 nfcv 2219 . . . 4 𝑧𝐴
3 ffnfvf.1 . . . 4 𝑥𝐴
4 ffnfvf.3 . . . . . 6 𝑥𝐹
5 nfcv 2219 . . . . . 6 𝑥𝑧
64, 5nffv 5205 . . . . 5 𝑥(𝐹𝑧)
7 ffnfvf.2 . . . . 5 𝑥𝐵
86, 7nfel 2227 . . . 4 𝑥(𝐹𝑧) ∈ 𝐵
9 nfv 1461 . . . 4 𝑧(𝐹𝑥) ∈ 𝐵
10 fveq2 5198 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1110eleq1d 2147 . . . 4 (𝑧 = 𝑥 → ((𝐹𝑧) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
122, 3, 8, 9, 11cbvralf 2571 . . 3 (∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1312anbi2i 444 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
141, 13bitri 182 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wcel 1433  wnfc 2206  wral 2348   Fn wfn 4917  wf 4918  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator