ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenlt GIF version

Theorem lenlt 7187
Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.)
Assertion
Ref Expression
lenlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem lenlt
StepHypRef Expression
1 rexr 7164 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 7164 . 2 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 xrlenlt 7177 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2an 283 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wcel 1433   class class class wbr 3785  cr 6980  *cxr 7152   < clt 7153  cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-xr 7157  df-le 7159
This theorem is referenced by:  letri3  7192  ltleletr  7193  letr  7194  leid  7195  ltle  7198  lelttr  7199  ltletr  7200  lenlti  7211  lenltd  7227  lemul1  7693  msqge0  7716  mulge0  7719  ltleap  7730  recgt0  7928  lediv1  7947  dfinfre  8034  nnge1  8062  nnnlt1  8065  avgle1  8271  avgle2  8272  nn0nlt0  8314  zltnle  8397  zleloe  8398  zdcle  8424  recnz  8440  btwnnz  8441  prime  8446  fznlem  9060  fzonlt0  9176  qltnle  9255  bcval4  9679  resqrexlemgt0  9906  climge0  10163
  Copyright terms: Public domain W3C validator