ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpml GIF version

Theorem genpml 6707
Description: The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpml ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpml
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prml 6667 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (1st𝐴))
3 rexex 2410 . . . 4 (∃𝑓Q 𝑓 ∈ (1st𝐴) → ∃𝑓 𝑓 ∈ (1st𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (1st𝐴))
54adantr 270 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (1st𝐴))
6 prop 6665 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prml 6667 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (1st𝐵))
8 rexex 2410 . . . . 5 (∃𝑔Q 𝑔 ∈ (1st𝐵) → ∃𝑔 𝑔 ∈ (1st𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (1st𝐵))
109ad2antlr 472 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑔 𝑔 ∈ (1st𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genpprecll 6704 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵)) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
1413imp 122 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)))
15 elprnql 6671 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
161, 15sylan 277 . . . . . . . . 9 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
17 elprnql 6671 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (1st𝐵)) → 𝑔Q)
186, 17sylan 277 . . . . . . . . 9 ((𝐵P𝑔 ∈ (1st𝐵)) → 𝑔Q)
1916, 18anim12i 331 . . . . . . . 8 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2019an4s 552 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2112caovcl 5675 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 108 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2147 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2705 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ((𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2726anassrs 392 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1819 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1819 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wex 1421  wcel 1433  wrex 2349  {crab 2352  cop 3401  cfv 4922  (class class class)co 5532  cmpt2 5534  1st c1st 5785  2nd c2nd 5786  Qcnq 6470  Pcnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-qs 6135  df-ni 6494  df-nqqs 6538  df-inp 6656
This theorem is referenced by:  addclpr  6727  mulclpr  6762
  Copyright terms: Public domain W3C validator