ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzledc GIF version

Theorem infssuzledc 10346
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzledc (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzledc
Dummy variables 𝑦 𝑎 𝑏 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7191 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎)))
21adantl 271 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎)))
3 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
4 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
5 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
6 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
73, 4, 5, 6infssuzex 10345 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
82, 7infclti 6436 . 2 (𝜑 → inf(𝑆, ℝ, < ) ∈ ℝ)
9 elrabi 2746 . . . 4 (𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ𝑀))
109, 4eleq2s 2173 . . 3 (𝐴𝑆𝐴 ∈ (ℤ𝑀))
11 eluzelre 8629 . . 3 (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℝ)
125, 10, 113syl 17 . 2 (𝜑𝐴 ∈ ℝ)
132, 7inflbti 6437 . . 3 (𝜑 → (𝐴𝑆 → ¬ 𝐴 < inf(𝑆, ℝ, < )))
145, 13mpd 13 . 2 (𝜑 → ¬ 𝐴 < inf(𝑆, ℝ, < ))
158, 12, 14nltled 7230 1 (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  DECID wdc 775   = wceq 1284  wcel 1433  {crab 2352   class class class wbr 3785  cfv 4922  (class class class)co 5532  infcinf 6396  cr 6980   < clt 7153  cle 7154  cz 8351  cuz 8619  ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  lcmledvds  10452
  Copyright terms: Public domain W3C validator