ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isotr GIF version

Theorem isotr 5476
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))

Proof of Theorem isotr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . 4 ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → 𝐺:𝐵1-1-onto𝐶)
2 simpl 107 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐴1-1-onto𝐵)
3 f1oco 5169 . . . 4 ((𝐺:𝐵1-1-onto𝐶𝐻:𝐴1-1-onto𝐵) → (𝐺𝐻):𝐴1-1-onto𝐶)
41, 2, 3syl2anr 284 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (𝐺𝐻):𝐴1-1-onto𝐶)
5 f1of 5146 . . . . . . . . . . . 12 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
65ad2antrr 471 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝐻:𝐴𝐵)
7 simprl 497 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
86, 7ffvelrnd 5324 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
9 simprr 498 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
106, 9ffvelrnd 5324 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
11 simplrr 502 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))
12 breq1 3788 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝑧𝑆𝑤 ↔ (𝐻𝑥)𝑆𝑤))
13 fveq2 5198 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑥) → (𝐺𝑧) = (𝐺‘(𝐻𝑥)))
1413breq1d 3795 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → ((𝐺𝑧)𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)))
1512, 14bibi12d 233 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → ((𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤))))
16 breq2 3789 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑆𝑤 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
17 fveq2 5198 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑦) → (𝐺𝑤) = (𝐺‘(𝐻𝑦)))
1817breq2d 3797 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐺‘(𝐻𝑥))𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
1916, 18bibi12d 233 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦)))))
2015, 19rspc2va 2714 . . . . . . . . . 10 ((((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
218, 10, 11, 20syl21anc 1168 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
22 fvco3 5265 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
236, 7, 22syl2anc 403 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
24 fvco3 5265 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑦𝐴) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
256, 9, 24syl2anc 403 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
2623, 25breq12d 3798 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
2721, 26bitr4d 189 . . . . . . . 8 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
2827bibi2d 230 . . . . . . 7 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
29282ralbidva 2388 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3029biimpd 142 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3130impancom 256 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3231imp 122 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
334, 32jca 300 . 2 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
34 df-isom 4931 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
35 df-isom 4931 . . 3 (𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶) ↔ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))))
3634, 35anbi12i 447 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) ↔ ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))))
37 df-isom 4931 . 2 ((𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶) ↔ ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3833, 36, 373imtr4i 199 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348   class class class wbr 3785  ccom 4367  wf 4918  1-1-ontowf1o 4921  cfv 4922   Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator