ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltpnf GIF version

Theorem mnfltpnf 8860
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf -∞ < +∞

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2081 . . . 4 -∞ = -∞
2 eqid 2081 . . . 4 +∞ = +∞
3 olc 664 . . . 4 ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)))
41, 2, 3mp2an 416 . . 3 (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))
54orci 682 . 2 ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))
6 mnfxr 8848 . . 3 -∞ ∈ ℝ*
7 pnfxr 8846 . . 3 +∞ ∈ ℝ*
8 ltxr 8849 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))))
96, 7, 8mp2an 416 . 2 (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))
105, 9mpbir 144 1 -∞ < +∞
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433   class class class wbr 3785  cr 6980   < cltrr 6985  +∞cpnf 7150  -∞cmnf 7151  *cxr 7152   < clt 7153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-cnex 7067
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158
This theorem is referenced by:  mnfltxr  8861  xrlttr  8870  xrltso  8871  xrlttri3  8872  nltpnft  8884  ngtmnft  8885  xltnegi  8902
  Copyright terms: Public domain W3C validator