![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeq | GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5540 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 7282 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 7282 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2138 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 (class class class)co 5532 0cc0 6981 − cmin 7279 -cneg 7280 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-neg 7282 |
This theorem is referenced by: negeqi 7302 negeqd 7303 neg11 7359 negf1o 7486 recexre 7678 negiso 8033 elz 8353 znegcl 8382 zaddcllemneg 8390 elz2 8419 zindd 8465 infrenegsupex 8682 supinfneg 8683 infsupneg 8684 supminfex 8685 ublbneg 8698 eqreznegel 8699 negm 8700 qnegcl 8721 xnegeq 8894 ceilqval 9308 expival 9478 expnegap0 9484 m1expcl2 9498 negfi 10110 dvdsnegb 10212 infssuzex 10345 infssuzcldc 10347 lcmneg 10456 ex-ceil 10564 |
Copyright terms: Public domain | W3C validator |