![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqreznegel | GIF version |
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
eqreznegel | ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 2993 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → -𝑤 ∈ ℤ)) | |
2 | recn 7106 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℝ → 𝑤 ∈ ℂ) | |
3 | negid 7355 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0) | |
4 | 0z 8362 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℤ | |
5 | 3, 4 | syl6eqel 2169 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ) |
6 | 5 | pm4.71i 383 | . . . . . . . . . 10 ⊢ (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ)) |
7 | zrevaddcl 8401 | . . . . . . . . . 10 ⊢ (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ)) | |
8 | 6, 7 | syl5bb 190 | . . . . . . . . 9 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ)) |
9 | 2, 8 | syl5ib 152 | . . . . . . . 8 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)) |
10 | 1, 9 | syl6 33 | . . . . . . 7 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))) |
11 | 10 | com23 77 | . . . . . 6 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ ℝ → (-𝑤 ∈ 𝐴 → 𝑤 ∈ ℤ))) |
12 | 11 | impd 251 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ)) |
13 | simpr 108 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴) | |
14 | 13 | a1i 9 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴)) |
15 | 12, 14 | jcad 301 | . . . 4 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
16 | zre 8355 | . . . . 5 ⊢ (𝑤 ∈ ℤ → 𝑤 ∈ ℝ) | |
17 | 16 | anim1i 333 | . . . 4 ⊢ ((𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
18 | 15, 17 | impbid1 140 | . . 3 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
19 | negeq 7301 | . . . . 5 ⊢ (𝑧 = 𝑤 → -𝑧 = -𝑤) | |
20 | 19 | eleq1d 2147 | . . . 4 ⊢ (𝑧 = 𝑤 → (-𝑧 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
21 | 20 | elrab 2749 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
22 | 20 | elrab 2749 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴)) |
23 | 18, 21, 22 | 3bitr4g 221 | . 2 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴})) |
24 | 23 | eqrdv 2079 | 1 ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 {crab 2352 ⊆ wss 2973 (class class class)co 5532 ℂcc 6979 ℝcr 6980 0cc0 6981 + caddc 6984 -cneg 7280 ℤcz 8351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |