| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqovex | GIF version | ||
| Description: Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.) |
| Ref | Expression |
|---|---|
| iseqovex.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| iseqovex.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| iseqovex | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2082 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))) | |
| 2 | simprr 498 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑦) | |
| 3 | simprl 497 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → 𝑧 = 𝑥) | |
| 4 | 3 | oveq1d 5547 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝑧 + 1) = (𝑥 + 1)) |
| 5 | 4 | fveq2d 5202 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1))) |
| 6 | 2, 5 | oveq12d 5550 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
| 7 | simprl 497 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
| 8 | simprr 498 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
| 9 | iseqovex.pl | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 10 | 9 | caovclg 5673 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆) |
| 11 | 10 | adantlr 460 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆) |
| 12 | peano2uz 8671 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (𝑥 + 1) ∈ (ℤ≥‘𝑀)) | |
| 13 | 7, 12 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 1) ∈ (ℤ≥‘𝑀)) |
| 14 | iseqovex.f | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 15 | 14 | ralrimiva 2434 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
| 16 | fveq2 5198 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 17 | 16 | eleq1d 2147 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑧) ∈ 𝑆)) |
| 18 | 17 | cbvralv 2577 | . . . . . . 7 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆 ↔ ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
| 19 | 15, 18 | sylib 120 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
| 20 | 19 | adantr 270 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆) |
| 21 | fveq2 5198 | . . . . . . 7 ⊢ (𝑧 = (𝑥 + 1) → (𝐹‘𝑧) = (𝐹‘(𝑥 + 1))) | |
| 22 | 21 | eleq1d 2147 | . . . . . 6 ⊢ (𝑧 = (𝑥 + 1) → ((𝐹‘𝑧) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆)) |
| 23 | 22 | rspcv 2697 | . . . . 5 ⊢ ((𝑥 + 1) ∈ (ℤ≥‘𝑀) → (∀𝑧 ∈ (ℤ≥‘𝑀)(𝐹‘𝑧) ∈ 𝑆 → (𝐹‘(𝑥 + 1)) ∈ 𝑆)) |
| 24 | 13, 20, 23 | sylc 61 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆) |
| 25 | 11, 8, 24 | caovcld 5674 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) |
| 26 | 1, 6, 7, 8, 25 | ovmpt2d 5648 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
| 27 | 26, 25 | eqeltrd 2155 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ‘cfv 4922 (class class class)co 5532 ↦ cmpt2 5534 1c1 6982 + caddc 6984 ℤ≥cuz 8619 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 |
| This theorem is referenced by: iseqfn 9441 iseq1 9442 iseqcl 9443 iseqp1 9445 |
| Copyright terms: Public domain | W3C validator |