ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqovex GIF version

Theorem iseqovex 9439
Description: Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
Hypotheses
Ref Expression
iseqovex.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqovex.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqovex ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤, + ,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑀,𝑥,𝑧
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem iseqovex
StepHypRef Expression
1 eqidd 2082 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))))
2 simprr 498 . . . 4 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑤 = 𝑦)
3 simprl 497 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → 𝑧 = 𝑥)
43oveq1d 5547 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝑧 + 1) = (𝑥 + 1))
54fveq2d 5202 . . . 4 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
62, 5oveq12d 5550 . . 3 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
7 simprl 497 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
8 simprr 498 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
9 iseqovex.pl . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
109caovclg 5673 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
1110adantlr 460 . . . 4 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑧𝑆𝑤𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
12 peano2uz 8671 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
137, 12syl 14 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥 + 1) ∈ (ℤ𝑀))
14 iseqovex.f . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
1514ralrimiva 2434 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
16 fveq2 5198 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1716eleq1d 2147 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑧) ∈ 𝑆))
1817cbvralv 2577 . . . . . . 7 (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑧 ∈ (ℤ𝑀)(𝐹𝑧) ∈ 𝑆)
1915, 18sylib 120 . . . . . 6 (𝜑 → ∀𝑧 ∈ (ℤ𝑀)(𝐹𝑧) ∈ 𝑆)
2019adantr 270 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑧 ∈ (ℤ𝑀)(𝐹𝑧) ∈ 𝑆)
21 fveq2 5198 . . . . . . 7 (𝑧 = (𝑥 + 1) → (𝐹𝑧) = (𝐹‘(𝑥 + 1)))
2221eleq1d 2147 . . . . . 6 (𝑧 = (𝑥 + 1) → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
2322rspcv 2697 . . . . 5 ((𝑥 + 1) ∈ (ℤ𝑀) → (∀𝑧 ∈ (ℤ𝑀)(𝐹𝑧) ∈ 𝑆 → (𝐹‘(𝑥 + 1)) ∈ 𝑆))
2413, 20, 23sylc 61 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
2511, 8, 24caovcld 5674 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
261, 6, 7, 8, 25ovmpt2d 5648 . 2 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
2726, 25eqeltrd 2155 1 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  cfv 4922  (class class class)co 5532  cmpt2 5534  1c1 6982   + caddc 6984  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  iseqfn  9441  iseq1  9442  iseqcl  9443  iseqp1  9445
  Copyright terms: Public domain W3C validator