![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numadd | GIF version |
Description: Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numadd.8 | ⊢ (𝐴 + 𝐶) = 𝐸 |
numadd.9 | ⊢ (𝐵 + 𝐷) = 𝐹 |
Ref | Expression |
---|---|
numadd | ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
2 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
3 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
4 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 8489 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2151 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
7 | 6 | nn0cni 8300 | . . . 4 ⊢ 𝑀 ∈ ℂ |
8 | 7 | mulid1i 7121 | . . 3 ⊢ (𝑀 · 1) = 𝑀 |
9 | 8 | oveq1i 5542 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁) |
10 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
11 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
12 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
13 | 1nn0 8304 | . . 3 ⊢ 1 ∈ ℕ0 | |
14 | 3 | nn0cni 8300 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
15 | 14 | mulid1i 7121 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
16 | 15 | oveq1i 5542 | . . . 4 ⊢ ((𝐴 · 1) + 𝐶) = (𝐴 + 𝐶) |
17 | numadd.8 | . . . 4 ⊢ (𝐴 + 𝐶) = 𝐸 | |
18 | 16, 17 | eqtri 2101 | . . 3 ⊢ ((𝐴 · 1) + 𝐶) = 𝐸 |
19 | 4 | nn0cni 8300 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
20 | 19 | mulid1i 7121 | . . . . 5 ⊢ (𝐵 · 1) = 𝐵 |
21 | 20 | oveq1i 5542 | . . . 4 ⊢ ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷) |
22 | numadd.9 | . . . 4 ⊢ (𝐵 + 𝐷) = 𝐹 | |
23 | 21, 22 | eqtri 2101 | . . 3 ⊢ ((𝐵 · 1) + 𝐷) = 𝐹 |
24 | 2, 3, 4, 10, 11, 1, 12, 13, 18, 23 | numma 8520 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
25 | 9, 24 | eqtr3i 2103 | 1 ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 (class class class)co 5532 1c1 6982 + caddc 6984 · cmul 6986 ℕ0cn0 8288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-sub 7281 df-inn 8040 df-n0 8289 |
This theorem is referenced by: decadd 8530 |
Copyright terms: Public domain | W3C validator |