ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numltc GIF version

Theorem numltc 8502
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1 𝑇 ∈ ℕ
numlt.2 𝐴 ∈ ℕ0
numlt.3 𝐵 ∈ ℕ0
numltc.3 𝐶 ∈ ℕ0
numltc.4 𝐷 ∈ ℕ0
numltc.5 𝐶 < 𝑇
numltc.6 𝐴 < 𝐵
Assertion
Ref Expression
numltc ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)

Proof of Theorem numltc
StepHypRef Expression
1 numlt.1 . . . . 5 𝑇 ∈ ℕ
2 numlt.2 . . . . 5 𝐴 ∈ ℕ0
3 numltc.3 . . . . 5 𝐶 ∈ ℕ0
4 numltc.5 . . . . 5 𝐶 < 𝑇
51, 2, 3, 1, 4numlt 8501 . . . 4 ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇)
61nnrei 8048 . . . . . . 7 𝑇 ∈ ℝ
76recni 7131 . . . . . 6 𝑇 ∈ ℂ
82nn0rei 8299 . . . . . . 7 𝐴 ∈ ℝ
98recni 7131 . . . . . 6 𝐴 ∈ ℂ
10 ax-1cn 7069 . . . . . 6 1 ∈ ℂ
117, 9, 10adddii 7129 . . . . 5 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1))
127mulid1i 7121 . . . . . 6 (𝑇 · 1) = 𝑇
1312oveq2i 5543 . . . . 5 ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇)
1411, 13eqtri 2101 . . . 4 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇)
155, 14breqtrri 3810 . . 3 ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1))
16 numltc.6 . . . . 5 𝐴 < 𝐵
17 numlt.3 . . . . . 6 𝐵 ∈ ℕ0
18 nn0ltp1le 8413 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵))
192, 17, 18mp2an 416 . . . . 5 (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)
2016, 19mpbi 143 . . . 4 (𝐴 + 1) ≤ 𝐵
211nngt0i 8069 . . . . 5 0 < 𝑇
22 peano2re 7244 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
238, 22ax-mp 7 . . . . . 6 (𝐴 + 1) ∈ ℝ
2417nn0rei 8299 . . . . . 6 𝐵 ∈ ℝ
2523, 24, 6lemul2i 8003 . . . . 5 (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)))
2621, 25ax-mp 7 . . . 4 ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))
2720, 26mpbi 143 . . 3 (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)
286, 8remulcli 7133 . . . . 5 (𝑇 · 𝐴) ∈ ℝ
293nn0rei 8299 . . . . 5 𝐶 ∈ ℝ
3028, 29readdcli 7132 . . . 4 ((𝑇 · 𝐴) + 𝐶) ∈ ℝ
316, 23remulcli 7133 . . . 4 (𝑇 · (𝐴 + 1)) ∈ ℝ
326, 24remulcli 7133 . . . 4 (𝑇 · 𝐵) ∈ ℝ
3330, 31, 32ltletri 7217 . . 3 ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵))
3415, 27, 33mp2an 416 . 2 ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)
35 numltc.4 . . 3 𝐷 ∈ ℕ0
3632, 35nn0addge1i 8336 . 2 (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)
3735nn0rei 8299 . . . 4 𝐷 ∈ ℝ
3832, 37readdcli 7132 . . 3 ((𝑇 · 𝐵) + 𝐷) ∈ ℝ
3930, 32, 38ltletri 7217 . 2 ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷))
4034, 36, 39mp2an 416 1 ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)
Colors of variables: wff set class
Syntax hints:  wb 103  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986   < clt 7153  cle 7154  cn 8039  0cn0 8288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  decltc  8505  numlti  8513
  Copyright terms: Public domain W3C validator