ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabexd GIF version

Theorem oprabexd 5774
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1 (𝜑𝐴 ∈ V)
oprabexd.2 (𝜑𝐵 ∈ V)
oprabexd.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
oprabexd.4 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
Assertion
Ref Expression
oprabexd (𝜑𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
2 oprabexd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
32ex 113 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
4 moanimv 2016 . . . . . 6 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
53, 4sylibr 132 . . . . 5 (𝜑 → ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
65alrimivv 1796 . . . 4 (𝜑 → ∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
7 funoprabg 5620 . . . 4 (∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
86, 7syl 14 . . 3 (𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
9 dmoprabss 5606 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵)
10 oprabexd.1 . . . . 5 (𝜑𝐴 ∈ V)
11 oprabexd.2 . . . . 5 (𝜑𝐵 ∈ V)
12 xpexg 4470 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V)
1310, 11, 12syl2anc 403 . . . 4 (𝜑 → (𝐴 × 𝐵) ∈ V)
14 ssexg 3917 . . . 4 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
159, 13, 14sylancr 405 . . 3 (𝜑 → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
16 funex 5405 . . 3 ((Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
178, 15, 16syl2anc 403 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
181, 17eqeltrd 2155 1 (𝜑𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  ∃*wmo 1942  Vcvv 2601  wss 2973   × cxp 4361  dom cdm 4363  Fun wfun 4916  {coprab 5533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-oprab 5536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator